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Abstract. Medical technologies in the form of wearable devices are an integral
part of our daily lives. These devices are devoted to acquire physiological data
to provide personal analytics and to assess the physical status of assisted individ-
uals. Nowadays, thanks to the research effort and to the continuously evolving
technologies, telemedecine plays a crucial role in healthcare. Electrocardiogram
(ECG) is one of the source signal that has been widely involved in telemedicine
and therefore the need for a quick and precise screening of ECG pathological con-
ditions has become a priority for the scientific community. Based on the above
motivation, we present a study aimed at evaluating the applicability of an highly
accurate detector of arrhythmia conditions to be used in combination of a com-
pressed version of the ECG signal. The advantage of using a technique of Com-
pressed Sensing (CS) relies on a faster detection of the approach, due to the lower
complexity of the method’s workflow. We conducted an experimental study to de-
termine if such a detector, working on compressed ECG signal, can achieve com-
parable results with the original approach applied to the uncompressed signal.
The results demonstrated that with a Compression Ratio equal to 16 it is possible
to achieve classification metrics around 99%, therefore showing a high suitability
of the approach to be involved in contexts of Compressed ECG.

Keywords: Machine Learning · Compressed Sensing · Automatic Detection ·
ECG · Arrhytmia

1 Introduction

Wearable technologies are becoming more and more present in our daily lives as de-
vices used for tracking activities, customizing user’s daily experiences, and monitoring



2 G. Rosa et al.

people’s health status [58]. The wearable devices fit into the Internet-of-Things (IoT)
paradigm, as things equipped with microchips, sensors and wireless communication
capabilities [6]. A particular application is directed to the ones called Wearable Health
Devices (WHDs) which uses various sensing technologies to collect measurements for
body temperature, motion/posture, heart rate, electrocardiogram (ECG), blood pressure,
respiration wave, and many other parameters [15,62]. WHDs populate a subclass of IoT
called Internet-of-Medical-Things (IoMT) [36]. The adoption of WHDs allows medical
practitioners to increase the efficiency of the diagnosis and reduce its costs [27]. This is
possible due to the availability of heterogeneous computing on WHDs and cloud-based
data storage for further assessment and long-term monitoring of the health status [1].

Many examples of IoMT systems have been recently proposed [13, 36, 39, 44, 63],
such as the ATTICUS system [7]. This is a system dedicated to the ambient-assisted
living based on the analysis of vital and behavioral data thanks to an innovative remote
monitoring system. The signals are acquired through a smart T-shirt [7,14] and then sent
to an Ambient Intelligence device. All the devices of ATTICUS are capable of (i) pre-
dicting anomalous situations (e.g., atrial fibrillation episodes) and (ii) communicating
them to a central Decision Support System (DSS) for the final confirmation.

The high quantity of information generated and transmitted by WHDs (e.g., the
ones that acquire real-time multi-lead ECG) raised the necessity of adopting compres-
sion techniques to reduce the usage of both memory and bandwidth. Domain Transform
Methods (DTM) can ensure the production of compressed ECG signals with low loss in
terms of clinical information. Such methods, however, increase the local computational
load, which results in increased the power consumption. Since WHDs are powered by
relatively small batteries, they suffer from limited autonomy. Using lossy compression
methods based on Compressed Sensing (CS) — in particular, digital CS methods —
allows to alleviate power consumption problems. Such methods require low computa-
tional load on microprocessors during the ECG signal compression step. In this case,
the aim of ECG signal compression is to reach maximum efficiency of data reduction
without loss of diagnostic information [12]. Previous studies have demonstrated that the
adoption of CS algorithms is a solution for WHDs only if the diagnostic information
(e.g.,, ECG morphology) is neither distorted nor lost [53]. If the original ECG signals
show sign of a medical conditions, it is possible to devise detection techniques able
to directly detect them on the compressed signals [9]. Examples of conditions that can
be detected on compressed signals include ventricular ectopic beat, supraventricular ec-
topic beat, fusion of a normal and a ventricular ectopic beat [38]. However, to the best of
our knowledge, there is no approach able to automatically detect arrhythmia conditions
on compressed ECG signals.

Among the many conditions for which WHDs could be beneficial, arrhythmia is
probably one of the most spread and dangerous. Arrhythmia is a condition in which the
heart beats are irregular, excessively rapid or slow. Atrial and ventricular arrhythmias
are the two forms of arrhythmias [52]. Even if some arrhythmias are generally regarded
to be innocuous, other arrhythmias, particularly ventricular arrhythmias, are extremely
deadly. Indeed, ventricular arrhythmias can lead to abrupt cardiac arrest if they are not
treated with extreme care and monitored continuously [16].
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In this paper, we introduce NEAPOLIS, a NovEl APproach for the autOmatic
reaL-time beat-to-beat detectIon of arrhythmia conditionS. NEAPOLIS aims at de-
tecting Bundle Branch Block (BBB), Premature Ventricular Contractions (PVC) and
Atrial Premature Beats (APB), and it was designed with the requirements to provide a
real-time and accurate detection of such conditions. Thanks to the developments of this
extended work, NEAPOLIS is now capable of working with both uncompressed and
compressed ECG signals. The set of features is the same regardless the input signal; in-
deed, we use a combination of state-of-art features (derived from statistics computed on
the RR information and from the morphological description of a heartbeat to describe
both an uncompressed and a compressed ECG signal.). As for the former, we evaluated
the features directly on the sample of the ECG signal. As for the latter, instead, we inte-
grated in the approach a CS technique based on a Deterministic Binary Block Diagonal
(DBBD) matrix as sensing matrix and we calculated the features from the signal in the
compressed domain.

This paper is an extension of our HEALTHINF’21 work [56]. The novel contribu-
tion we provide in this extension is the following:

1. We introduce an extended version of NEAPOLIS which is able automatically clas-
sify not only uncompressed ECG signals (like in our previous work), but also com-
pressed ones; we achieve this goal by re-designing the set of features used in our
previous work and adopting a CS technique based on a Deterministic Binary Block
Diagonal (DBBD) matrix;

2. We evaluate NEAPOLIS on the Physionet MIT-BIH arrhythmia database, by com-
pressing the original signals with several Compression Ratio (CR) factors.

The rest of the paper is structured as follows: Section 2 first describes the arrhyth-
mia conditions and their incidence on the population and then recall the main steps
of the original version of NEAPOLIS; in the second part of the section, a brief de-
scription of the state-of-the-art methods for the detection in the compressed domain is
offered together with a detailed description of the chosen method as CS algorithm for
NEAPOLIS. Section 4.1 reports on the design of the study to experiment NEAPOLIS
in the compressed domain and Section 4.2 contains the details on the results achieved
by the approach. Finally Section 5 concludes the paper and highlights the future works.

2 Background and related work

2.1 The arrhythmia conditions

A bundle branch block can be defined as an abnormality of the electrical conduction
system of the heart [18]. In case the defect is originated in the left or right ventricles the
blocks are further classified into Right BBB (RBBB) and Left BBB (LBBB). Scientific
research studies have reported that BBB has been observed in 8% to 18% of subjects
with acute myocardial infarction. It has also been associated with an increased risk of
complete heart block and sudden death [34,48]. Before the involvement of thrombolytic
treatment—that limits infarct size, improves ventricular morphology and function, and
decreases mortality—several studies had reported on the incidence of RBBB in patients
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with acute myocardial infarction [45]. The range of incidence rate was found to be
between the 3% and 29% [11, 32]. In a recent study, conducted on 1015 patient where
38%of them had ST elevation myocardial infarction (STEMI), RBBB was documented
in 8% of patients while LBBB in 4% of patients [19]. Also, both left and right BBB
have been associated with increased in-hospital and long-term mortality in patients with
acute non-ST elevation myocardial infarction (NSTEMI) [33]. RBBB are present with
a incidence rate of 7% for those with NSTEMI. It was also found that RBBB is usually
the manifestation of infarctions. These latter are often accompanied by heart failure,
complete AV block, arrhythmias, and a high mortality rate [4,47,55]. With regard to the
LBBB, the incidence in the general population is low, approximately 0.6% of subjects
developing it over 40 years [10, 28]. The incidence rate changes if considering patients
with chronic heart failure. Indeed, approximately one third of these patients have left
bundle branch block (LBBB) on their 12-lead ECG [5, 59].

Premature ventricular complex (PVC) is characterized by early depolarization orig-
inating from ventricles. PVC is an electrocardiogram (ECG) finding that is commonly
found in the general population and is associated with structural heart disease and an in-
creased risk of sudden death [2, 43]. In the absence of structural heart disease, frequent
PVCs have traditionally been considered a benign phenomenon, only requiring medical
attention when symptomatic. This understanding has undergone a substantive evolution
over the last decade. So-called benign PVCs are now known to have malignant poten-
tial in susceptible patients and can manifest as triggers for ventricular fibrillation (VF)
and sudden cardiac death [29]. Scientific research studies have reported that PVCs are
present in more than the 6% of middle-aged adults, based on a 2-minute ECG [61].

Ranging from 20% to 25% of ischemic strokes occur due to embolic complications
caused by atrial fibrillation [17, 25]. In addition, for patients that have experienced is-
chemic stroke or transient ischemic attacks, in presence of AF they can be exposed to
recurrent strokes [65]. Therefore, it is vital to detect paroxysmal atrial fibrillation after
stroke or transient ischemic attack and involve anticoagulation treatment in such pa-
tients [26, 66]. This diagnose typically includes a 24 hours continuously monitoring.
One of the clues that can lead to a early diagnosis of paroxysmal atrial fibrillation are
the occurrence of atrial premature beats (APB). APBs are observed frequently in normal
subjects and patients with a variety of diseases. They are manifested as an interruption
in the heart rhythm with a premature beat having a narrow QRS complex [60]. Indeed,
in 24-hour ECG recordings frequent APB are correlated to an increased incidence of
paroxysmal AF in patients with ischemic stroke [64].

2.2 Automatic detection of arrhythmia conditions

In literature there are different set of features for capturing both temporal and morpho-
logical carachteristics of ECG signals. Zhao et al. [70] proposed an approach for the ex-
traction of features that allows a reliable heart rhythm recognition. They basically used
two techniques for the features generation: wavelet was used to extract the coefficients
of the transform and autoregressive modelling (AR) to obtain the temporal structures
of ECG waveforms. Then, wavelet and AR coefficients were concatenated together to
form the feature vector for the classification. They evaluated a large set of outputs that
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include also our target conditions, but they chose to experiment the method on a sub-
set of the available recordings from the MIT-BIH Arrhythmia5, a freely accessible and
common database of the scientific literature with annotation at heartbeat level. The re-
sults showed that the approach provided good performances of classification reaching
an accuracy of 99.68%.

Li et al. [41] proposed a method for ECG classification using entropy on Wavelet
packet decomposition (WPD) and Random Forest. The authors also experimented the
devised method on the MIT-BIH Arrhythmia database but with a different output be-
cause they conducted another kind of experiment, focused on a medical standard, i.e.,
the EC57:1998 standard [3]. The authors stated that although the coefficients by Dis-
crete Wavelet Transform (DWT) or WPD can reveal the local characteristics of an ECG
signal, the number of such coefficients is usually so huge that it is hard to use them as
features for classification directly. Therefore, they extracted some high-level features
from these coefficients for better classification. In the proposed method, they chose the
entropy as high level features extractor from a DWT. The results reported on an obtained
overall accuracy approximately equal to 94.61%.

Another very important set of features is the one proposed by Leonarduzzi et al.
[40], i.e., a set of features derived from the multifractal analysis. The authors stated that
this analysis highly suits the analysis of the Heart Rate Variability (HRV) fluctuations,
since it gives a description of the singular behavior of a signal. Therefore, the main
features of this work are based on the multifractal wavelet leader estimates of the second
cumulant of the scaling exponents and the range of Holder exponents, or singularity
spectrum. The results demonstrated how these features can be involved in a tool for a
precise detection of myocardial ischemia.

Many works from the scientific literature have involved the Fast Fourier Transform
(FFT) in their methods for the classification of ECG segments. For instance, Haque et
al. [24] proposed a combination of FFT-based and wavelet features. The main findings
achieved by the authors was that the wavelet can provide better indicators—rather than
the FFT—of small abnormalities in ECG signals.

There are various approach for automatic arrhythmia conditions based on machine
learning techniques, as described by [20]. In Table 1 we report some of the most re-
cent and best performing approaches in literature based on different machine learning
techniques, including also neural networks and transfer learning. For example, Yildirim
et al. [68] presented a new deep learning model for ECG classification using network-
based wavelet sequences, called DBLSTM-WS. Their approach was evaluated on the
detection of five different heartbeat types, including Left Bundle Branch Block (LBBB)
and Right Bundle Branch Block (RBBB), with an accuracy score of 99.39%. Yildirim
et al. [69] proposed an approach where they combine a convolutional auto-encoder
(CAE), to reduce the signal size of arrhythmic beats, with a LSTM classifier. As a re-
sult, ECG signals were compressed by an average 0.70% percentage root mean square
difference (PRD) rate, with an accuracy score over 99.11% was observed. Moreover,
Li et al. [42] proposed a deep learning-based method of cardiac arrhythmia episodes
using deep residual networks (ResNet). Their approach was evaluated with both single
and 2-lead ECG signals. The resulting classification accuracy is 99.06% for single lead

5 https://archive.physionet.org/physiobank/database/mitdb/
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ECG and 99.38% for 2-lead ECG. Zheng et al. [71] proposed an automatic approach
that takes as input ECG signal images, from where using a combined deep learning
model composed of CNN-LSTM, can classify 8 different heartbeat types from MIT-
BIH database. Their approach achieved an overall accuracy score of 99.01%. Sahoo et
al. [57] proposed an automatic approach using an QRS complex features combined with
the multiresolution wavelet transform to calssify four types of heartbeats. The overall
accuracy achieved is 98.39% using SVM. Osowski et al. [49] proposed a recognition
system based on SVM for heartbeat classification. Using Higher Order Statistics (HOS)
combined with Hermite, their approach achieves an overall accuracy of 98.18%.

There are also approaches that exploit the advantages of Transfer Learning, with
an embedded feature extraction using ECG signal images. For example, Isin et al. [30]
proposed AlexNet, a transferred deep convolutional network that can classify up to
three different cardiac conditions with a recognition rate of 98.51%. Also, Pal et al. [50]
proposed CardioNet that can classify 29 types of arrhythmia conditions from MIT-BIH
database with a total accuracy score of 98.92%.

Pandey et al. [52] proposed a relevant work on automatic detection of Arrhythmia
conditions. Their approach provides a complete automatic detection of five heartbeat
types, including the LBBB, RBBB and PVC. The approach is based on a single Long
Short-Term Memory (LSTM) Neural Network as model. The inputs to the model were
based on higher-order statistics, wavelets, morphological descriptors, and R–R inter-
vals. Thus, 45 features were in charge of describing the electrocardiogram signals. In
details, to extract the features, the authors designed a temporal window of 180 samples
sized (half of a second on the MIT-BIH Arrhythmia). The window was centered on each
R peak, previously obtained thanks to the annotations of each R wave position available
from this database. The features have been evaluated only inside this interval. A 2-fold
cross validation was used to evaluate the accuracy of the classification: The entire MIT-
BIH arrhythmia database was divided in two folds, i.e., two sub-dataset. Their LSTM
model was trained on 40 % (80 % of 50 %) sub-dataset, and 10 % (20 % of 50 %)
sub-dataset was dedicated to a preliminary validation phase. The remaining 50 % of the
data set was used for testing. After the performance evaluation, the model obtained an
overall accuracy equal to 99.37%.

The main difference between NEAPOLIS and the described approaches is that we
allow a real-time classification, also achieving a fast and lightweight performing classi-
fication. This was mainly due to the features vector of NEAPOLIS that was basically
composed of near real-time features and a low-complexity model for the classification.
Indeed, Neural Networks are usually more expensive in terms of resources compared to
classical machine learning algorithms, also some the described studies does not follow
the AAMI standard for the validation of their approach (as the case of the work pro-
posed by Li et al. [41]). In the context of this study, we also evaluate the effectiveness
of those features in the context of compressed ECG signals.

2.3 Detection in the compressed domain

In this section, a brief description of the state of the art of works evaluating the accuracy
of heart disease detectors in the compressed domain is presented.
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Study Heartbeat classes Features Technique Overall Accuracy

Yildirim et al. [68] 5 End-to-end, DWT DBLSTM-WS 99.39%
Yildirim et al. [69] 5 Encoded features CAE-LSTM 99.11%
Li et al. [42] 5 End-to-end ResNet 99.06%
Zheng et al. [71] 8 End-to-end CNN-LSTM 99.01%
Sahoo et al. [57] 4 QRS, DWT SVM 98.39%
Osowski et al. [49] 13 HOS, Hermite SVM 98.18%
Li et al. [41] 5 WPE, RR RF 94.61%
Isin et al. [30] 3 AlexNet CNN 98.51%
Pal et al. [50] 29 DenseNet CardioNet 98.92%
Pandey et al. [52] 5 Temporal, Morphological LSTM 99.37%

Table 1: Summary of the approaches for the automatic detection of arrhythmia condi-
tions proposed in literature.

The utilization of CS in WHD based monitoring may provide a solution for detec-
tion of atrial fibrillation from compressed ECG signals. This detection approach may
reduce the time required for digital signal processing algorithms applied on raw (or
reconstructed after compression) ECG signals. For example, the problem that persists
in existing methods utilized for the detection of atrial fibrillation pathology from com-
pressed ECGs is related to the unsatisfactory classification performance of the used
algorithms, especially in where high CR is required [9]. In literature, investigations re-
garding the applied detection algorithms from compressed ECGs are reported and in
the following, a brief review is presented.

The authors of the work proposed in [9] implemented a deep learning method which
is able to detect the atrial fibrillation directly from compressed samples of ECG signals
without performing the reconstruction step. This method makes use of the measurement
matrix (i.e., the sensing matrix) utilized during ECG signal compression to initialize the
first layer of a deep neural network in order to obtain a prior information which leads
thereafter to obtain an improved classification performance of the desired pathological
(e.g., the presence of atrial fibrillation) issue on the investigated ECG signal. Further-
more, the reported experimental results in [9] describe an accuracy of 97.52% and an
F1 score of 98.02% for a CR = 10%, and on the other side, the method was assessed
against of a CR = 90% reporting a reduction of the accuracy to 6.77% and F1 to 5.31%,
respectively.

The work proposed in [37] dealt with an approach that retrieves vital information
from a digital compressed single-lead electrocardiogram (ECG) signal by combining
Machine Learning and Compressed Sensing. This study was focused on the identifica-
tion of R-peak occurrences from compressed ECG. The results demonstrated that the
use of CS in combination with a ML technique achieve results comparable to the ones
applied to the uncompressed ECG signal.

In the work proposed in [38], a heartbeat morphology classifier was presented.
This method worked on compressed ECG signals and signal compression was realized
through 1-bit quantization. The authors then experimented several machine learning
techniques to classify the heartbeats from compressed ECG signals. The obtained re-
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sults showed that the tool exhibited comparable results with other similar methods that
performed the same detection but on uncompressed ECG signals.

2.4 The Compressed Sensing Algorithm

The CS algorithm here adopted is based on a Deterministic Binary Block Diagonal
(DBBD) matrix as sensing matrix. In particular, in case of ECG, the DBBD in combi-
nation with the Discrete Cosine Transform (DCT) dictionary matrix has been demon-
strated to outperform the others CS techniques based on sensing matrix randomly built
[54]. Another CS technique for ECG is proposed in [53]. In this case, the sensing ma-
trix is chosen such that the vector of compressed samples is obtained from a sort of
cross-correlation between the ECG signal and a vector consisting of ones where the
ECG signal has a high contribution and zero elsewhere. Even if the approach of [53]
outperforms the DBBD-based method in terms of reconstruction quality, it requires
more steps for its implementation, i.e. the determination of the vector containing ones
and zero according to a threshold defined from a percentile of the ECG amplitude dis-
tribution and also the transmission of this vector to the host. For this reason, in this
paper, the DBBD technique has been adopted being more easy for its implementation
on low-power device with low computational capabilities.
In general, the CS can be modelled as multiplication between the column vector x of N
acquired samples at Nyquist rate and a M×N sensing matrix Φ:

ŷ = Φ ·x (1)

The y vector will contain the M compressed samples.
In the case of DBBD, the sensing matrix Φ is defined as:

Φ̂ =


1CR 0CR . . . 0CR
0CR 1CR . . . 0CR

... . . .
. . .

...
0CR . . . 0CR 1CR

 (2)

where, CR=N/M is the compression ratio, 1CR and 0CR are row vectors of CR ones and
zeros, respectively. According to (2), the CR must be an integer, otherwise, the sensing
matrix Phi cannot be built.

Usually, in the literature, the reconstruction phase is performed with the aim of
estimating x from the compressed vector y, according to the sensing matrix Φ, and a
dictionary matrix Ψ. In particular, Ψ is selected according to a specific domain where
the signal can be represented by few K non zero coefficients. The first reconstruction
step consists in estimating these coefficients (i.e. θ̂) by solving:

θ̂ = argmin
θ

‖θ‖1 , subject to: y = ΦΨθ, (3)

From θ̂, the reconstructed signal x̂ is obtained as follows:

x̂ = Ψ · θ̂ (4)
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As demonstrated in [54], in the case of DBBD compression for ECG signals, the best
choice for the dictionary matrix definition is the DCT matrix.
The solving of (3) is usually performed with the Orthogonal Matching Pursuit (OMP)
algorithm, which exhibits a computational complexity O((N +M)S), where S < N is
the number of iterations. This step exhibits a high computational load that increases
with N. Thus, the reconstruction step limits the use of CS in case of real-time systems
or early warning implementations. For this reason, the idea underlying this paper is to
detect anomalies on ECG signals directly in the compressed domain (i.e. by considering
the vector y of compressed samples), removing the need of reconstruction.

3 Automatically Detecting Arrhythmia Conditions

In this section, we describe NEAPOLIS, an online detector of arrhythmia conditions
based on the analysis of heartbeats signals that works both on uncompressed and com-
pressed ECG signals. Figure 1 describes the workflow of NEAPOLIS.

Fig. 1: The workflow of NEAPOLIS for online beat classification.

First, NEAPOLIS receives as input a single lead digital ECG signal. A small por-
tion of the signal is buffered until there are at least 11 R-peaks (i.e., heartbeats). Follows
a beat-to-beat segmentation and a 2-step median filter to get rid of baseline drifts. Next,
the feature vector is generated and given to a machine learning model to perform the
classification. As a result, NEAPOLIS provides a label for the most probable classifi-
cation among N (Normal Sinus Rhythm), RBBB (Right Bundle Branch Block), LBBB
(Left Bundle Branch Block), PVC (Premature Ventricular Contraction), and APB (Atrial
Premature Beat). In the following sub-sections, we describe in detail each component
of NEAPOLIS.

3.1 ECG Digital Processing

The digital signal processing embedded in NEAPOLIS is based on the one proposed
by [52]. It can be conceptually divided in beat-to-beat segmentation and signal filtering.
Both these procedures are triggered only when a long enough portion of a digital single
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lead ECG is buffered (i.e., at least 11 R peaks). Once these two steps are completed, the
features can be extracted from the obtained signal.

First, for the beat-to-beat segmentation, NEAPOLIS evaluates the position of the
R peaks from all the buffered ECG segment using a QRS detector, such as the widely
used algorithm proposed by [51]. As a result, the R peak positions in the buffered ECG
are obtained, then the segmentation process can start. Evaluating a time window of 180
samples, centered on a R peak, all the the samples included in the window are selected.
This leads to the definition of a single heartbeat signal, i.e., a sample vector of length
180 centered on a R peak.

After, NEAPOLIS performs the baseline removal on the heartbeat signal. This
means that two median filters are applied, where the first is a filter of 200 ms, applied on
the raw signal, and the latter is a median filter of 600ms applied on the signal resulting
from the application of the first filter. At the end, a set of filtered heartbeat signals are
obtained.

3.2 Heartbeat Features

Next subsections describe in detail the features extracted by NEAPOLIS.
After the previous steps, follows the feature extraction phase. In NEAPOLIS we

use a set of state-of-the-art features from the literature combined with morphological
features. We select only the features that allow a real-time detection on the input signals,
with the price of a limited buffered portion of the ECG signal to be processed. Next, we
describe in detail the feature used in NEAPOLIS.

– Energy of Maximal Overlap Discrete Wavelet Transform The wavelet transform
(WT) is a mathematical operator that can be used for the decomposition of time se-
ries signals into distinct subsignals. One of the two forms of WT is the DWT. The
maximum overlap discrete wavelet transform (MODWT) is a modified DWT. In the
MODWT, there is no process of subsampling, therefore leading to a higher level of
information in the resulting wavelet and scaling coefficients, when compared to the
DWT [22]. For our purposes, we evaluated the MODWT and then extracted the
energy features according to the following steps: (i) selection of a mother wavelet
function W and the decomposition level L; (ii) decomposition of the original heart-
beat signals according to the specified W and L; and (iii) calculation of the energy
of each coefficient in each node in the last level L. This procedure has also been
partially considered in the feature extractor proposed by [41]. In our case, we used
the db2 Daubechies wavelet function and three levels of decomposition.

– Autoregressive Model (AR) As suggested in the method proposed by [70], we in-
volved the calculation of the Autoregressive model (AR) coefficients of order 4. As
outcomes, we evaluated the AR coefficients and the reflection coefficients, using
the Yule-Walker estimator [21].

– Multifractal Wavelet Leader The goal of multifractal analysis is to study signals
that present a point-wise Holder regularity variable, i.e., that may largely vary from
point to point. When dealing with a signal, performing the multifractal analysis
refers to the estimation of its spectrum of singularities. Therefore, the determina-
tion of the spectrum of singularities of a signal is important to analyze its singu-
larities [40]. In case of a real-life signal, it cannot be numerically evaluated due
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to constraint like finite resolution and the sampling of signals [35]. To overtake
this limitation, a multifractal formalism was introduced: the wavelet leaders [31].
In NEAPOLIS, we involved the multifractal wavelet leader estimates of the log-
cumulants of the scaling exponents.

– Fast Fourier Transform Our approach embeds the evaluation of the Fast Fourier
Transform on the heartbeat signal. Indeed, FFT represents a method for extracting
helpful information out of statistical features of ECG signal.

– R-R interval descriptors These features have been selected from a larger set of R-R
statistical descriptor proposed by Pandey et al. [52]. In detail, we selected only the
features that can be computed with a limited buffering of the ECG signal. Thus, we
excluded from our set o f features the global-RR interval, because it represented
the average of all the pre-RR values present in the last 20 min. This would not
allow NEAPOLIS to perform a real-time detection, even using ECG buffering. As
a result, we select the following features:
• pre-RR interval, that is the distance between the actual and previous heartbeat;
• post-RR interval, that is the distance between the actual and next heartbeat;
• local-RR interval, that is the average of 10 previous pre-RR values.

Within this new study, we opted for removing the information related to the conti-
nuity of the R peaks. This choice was due to the considerations (i) that the R peaks
are clinical features retrievable with a highly accurate QRS detector, which could
impact on the low-complexity of the algorithm designed for this study and (ii) that
the R peaks could not be always observed in a compressed domain.

– Discrete Cosine Transform-based features Previous work showed that Discrete Co-
sine Transform (DCT) is the best choice for the reconstruction of the ECG signal
from the compressed samples [54]. Therefore, we include features derived from the
DCT when NEAPOLIS runs on compressed ECG signals. We used the same order
we used for the FFT-based features.

3.3 Beat Classification

The last phase of NEAPOLIS is the beat classification. Once the previously described
features are extracted, a normalization step and also data sampling (i.e., SMOTE [8])
are applied. The first transforms the features in a predefined range of values, the latter
helps to deal with unbalanced data.

Next, a machine learning model classifies the heartbeats as N, RBBB, LBBB, PVC,
and APB. The only constraint that NEAPOLIS have for that phase is to use a supervised
machine learning technique, thus different algorithms can be used. The best configura-
tion of NEAPOLIS, as evaluated in the previous study, is represented by a machine
learning pipeline composed of SMOTE sampling, min-max scaler and Random Forest
algorithm.

4 The Study

In this section, a detailed description of the study is offered, concerning the study de-
sign, the context of the study and the final results.
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Fig. 2: The experimental workflow designed for this study.

4.1 Study Design

In this section we present the study designed to evaluate the applicability of our ap-
proach in the compressed domain. Specifically, when we first presented NEAPOLIS,
we observed high classification performances in the classification of the heartbeat in
N (Normal Sinus Rhythm), RBBB (Right Bundle Branch Block), LBBB (Left Bundle
Branch Block), PVC (Premature Ventricular Contraction), and APB (Atrial Premature
Beat). An important role were played by the features vector and therefore by the algo-
rithms chosen to generate it.

In this work, the objective is to evaluate the applicability of such a set of features
on a compressed version of the heartbeat signal, in order to assess the applicability of
NEAPOLIS also in contexts of compressed data transmissions.

Thus, our new study is steered by the following research questions:

RQ1: What are the classification performances of NEAPOLIS when dealing
with uncompressed ECG signals?
RQ2: What are the classification performances of NEAPOLIS when dealing
with compressed ECG signals?

With the first research question, we aim at evaluating the refined version of NEAPO-
LIS on the uncompressed signal with respect to the previous version of the approach
[56].

With the second research question, we want to verify if NEAPOLIS—applied to
compressed data—can reach a classification accuracy comparable to the versions of the
approach that work on the uncompressed signal.

Experimental Workflow The workflow of the experimented designed within this work
is depicted in Figure 2.

NEAPOLIS was designed to work in the time domain and the main processing
steps were basically:
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1. the buffering of an ECG single lead trace, according to a minimum amount evalu-
ated on the number of R peaks;

2. the preprocessing aimed at segmenting the trace in heartbeats according to the R
peaks and filtering the ECG from noise and artefacts;

3. the features extraction steps where the final features vector was generated to be
used as input in the final classification stage.

The extension of NEAPOLIS is resulted in a comparison study between the clas-
sification performances of the model in the uncompressed and compressed domain.
Therefore—in this study—the compression algorithm is applied right before the evalu-
ation of the final features vector. In this way, it was possible to compare the usefulness
of the different features both in the uncompressed than in the compressed domain.

Context of the study The Physionet MIT-BIH arrhythmia database [23, 46] was in-
volved in this study. It is a database widely used in the state of the art for the detection
of arrhythmia conditions [46]. This DB contains 48 ambulatory ECG recordings, ac-
quired at 360 Hz sampling frequency and with 11-bit resolution. Cardiologists from
Physionet worked to provide annotations for each heartbeat of this DB. The final num-
ber of hearbeats labeled are around 110,000 divided into 15 different categories. A
standard procedure from the scientific literature [67] can be applied to this DB in or-
der to: (i) remove record with paced beats and (ii) consider only 5 categories of beat
annotations: N, LBBB, RBBB, APB and PVC. The distribution of such categories of
hearbeats is depicted in Figure 3.

The validation scheme involved in this work is the same used for the initial vali-
dation of NEAPOLIS. The scheme refers to a standard procedure [52] that needs an
initial decomposition of the dataset into two sub datasets, namely DS1 and DS2. Ac-
cording to the standard procedure, the first one is used as training set while the second
as test set.

To guarantee the consistence of the experiment, we have repeated x1000 the split-
ting process into DS1 and DS2. This helped in avoiding any convenient split on a single
run. The validation protocol was therefor applied x1000 and the results were avareged
accordingly.

Uncompressed vs Compressed Domain For uncompressed domain it is meant the
original version of NEAPOLIS, where the features were evaluated directly on the
uncompressed version of the heartbeat while for compressed domain it is meant the
domain where the heartbeat is not considered in its entire length but in a compressed
version. Indeed, we evaluated the applicability of the compression in NEAPOLIS for
different compression ratios.

Specifically, the experiment was designed to compare the classification performances
in the compressed domain for the compression ratios in the set 2, 4, 8, 16. This choice
was due to:

– the length of the original heartbeat,
– the compression algorithm.
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Fig. 3: Count of selected heartbeat types from the MIT-BIH arrhythmia database [46].

Indeed, the compression algorithm—chosen for this work—allowed to involve in-
teger CRs, otherwise, the sensing matrix Φ cannot be defined (see (2)). For simplicity,
in this work the CRs are chosen in forms of powers of 2 to experiment the maximum
number of CRs, i.e., four in this study. Thus, we opted for imposing an initial length
of 176 (instead of 179) for each heartbeats. To do so, we performed a cutting of three
samples at the extremities of the signal.

An example of a heartbeat signal represented in the uncompressed domain and in
its four versions in the compressed domain is depicted in Figure 4.

4.2 Study Results

This section reports the empirical evaluation we conducted to evaluate the classification
performances of NEAPOLIS in the compressed domain.

The classification performances—obtained by NEAPOLIS applied to the uncom-
pressed ECG signal and to the 4 versions of compressed ECG signal—have been com-
pared by using the following class-level metrics:

– Accuracy, i.e., the number of all the correctly classified instances divided by the
total number of the instances. It is computed as T P+T N

T P+T N+FP+FN
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Fig. 4: Example of a heartbeat signal represented in the two domains and for different
CRs.

– Sensitivity, i.e., the number of positive instances the are correctly classified with
respect to the sum between the number of correctly classified positive instances and
wrongly classified ones as negative. It is computed as T P

T P+FN
– Specificity, i.e., the number of negative instances that are correctly classified di-

vided by the sum between the number of negative instances correctly classified and
the wrongly classified positive instances, computed as T N

T N+FP
– Precision, i.e., the number of positive instances that are correctly classified with

respect to the total number of positive instances, computed as T P
T P+FP

– F1, i.e., that represents the harmonic mean of precision and recall, computed as
2×TP

(2×TP)+FN+FP

RQ1: NEAPOLIS for Uncompressed ECG Signals To answer RQ1, we reported
the global results — expressed in terms of the above classification metrics — in Ta-
ble 2. This table compares the previously published version of NEAPOLIS with the
refined version presented in this paper. Therefore, this table compares versions of the
approach only in terms of application on uncompressed signal. From this results, it is
possible to observe that the refined version of NEAPOLIS outperforms the previous
version with respect to all the classification metric except for the specificity. These re-
sults demonstrate the advantage in refining the features vector to be used as input to the
ML classification stage. Specifically, the new set of features—based on the evaluation
of the cosine discrete transform—has revealed its impact on the classification perfor-
mances of NEAPOLIS. The global accuracy achieved by this newly refined version of
the NEAPOLIS is 0,989.
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Table 2: Comparison between NEAPOLIS applied to the uncompressed ECG and the
previously published version of NEAPOLIS [56].

Version of NEAPOLIS Sensitivity Specificity Precision F1

Uncompressed - Previous version [56] 0,971 0,995 0,972 0,971
Uncompressed - This version 0,989 0,986 0,989 0,989

Table 3: Comparison between NEAPOLIS applied to the uncompressed ECG and
NEAPOLIS applied to the compressed ECG according to the specific CR.

Version of NEAPOLIS Accuracy Sensitivity Specificity Precision F1

Uncompressed - This version 0,989 0,989 0,986 0,989 0,989

Compressed with CR = 2 0,992 0,992 0,987 0,992 0,992
Compressed with CR = 4 0,992 0,992 0,987 0,992 0,992
Compressed with CR = 8 0,992 0,992 0,989 0,992 0,992
Compressed with CR = 16 0,991 0,991 0,989 0,991 0,991

RQ2: NEAPOLIS for compressed ECG Signals To answer RQ2, we reported the
global results of NEAPOLIS in the compressed domain in Table 3. These achievements
clearly highlight that the performances of NEAPOLIS on the uncompressed ECG sig-
nal are equals to the ones provided by NEAPOLIS when applied to the compressed
signal.

Figure 5 contains the boxplots of the classification metrics for all the versions of
NEAPOLIS, averaged among the 1,000 iterations.

To provide a complete overview of the results, Figure 4 shows the classification
performances detailed by class. These results are in line with the global ones, therefore
— also in this case — it is possible to observe that NEAPOLIS shows comparable
performances both in the uncompressed than in the compressed domain.

The only variations shown by all the results are mostly provided by the third deci-
mal digit. This could mean that the difference is not significant and that the main result
of this work is that NEAPOLIS shows the same potential for application in the un-
compressed and compressed domain. However, this slight difference may be due to
the filtering operation performed by the DBBD compression algorithm that reduces the
effect of noise and distortion on the performed classification.

5 Conclusion and future work

In this paper we presented an extended version of NEAPOLIS, an approach originally
designed to provide an accurate and real-time detection of arrhythmia conditions. Once
satisfied these requirements, we focused on an extension of that work, with the aim at
evaluating the potential of NEAPOLIS to be involved in contexts of compressed ECG.
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Fig. 5: The boxplots related to the global performances achieved by all the versions of
NEAPOLIS.

To this aim, we slightly refined the set of features originally designed for NEAPO-
LIS and optimized it according to the chosen compression algorithm, i.e., the one based
on a Deterministic Binary Block Diagonal matrix as sensing matrix.

An extensive study was conducted to evaluate the potential of NEAPOLIS in the
compressed domain; specifically, we evaluated the classification performances of our
approach at varying of different Compression Ratios. The final results clearly showed
that this new version of NEAPOLIS can work with highly compression ECG signal,
by reaching a Compression Ratio of 16.



18 G. Rosa et al.

Table 4: Comparison between uncompressed and compressed NEAPOLIS detailed by
class.

NEAPOLIS Accuracy Sensitivity Specificity Precision F1

Class N - Normal Heartbeat

Uncompressed 0,991 0,995 0,981 0,994 0,994
CR = 2 0,993 0,996 0,984 0,995 0,995
CR = 4 0,993 0,996 0,984 0,995 0,995
CR = 8 0,993 0,995 0,986 0,995 0,995
CR = 16 0,992 0,994 0,986 0,995 0,995

Class LBBB - Left Bundle Branch Block

Uncompressed 0,999 0,991 1,000 0,999 0,991
CR = 2 0,999 0,993 1,000 0,999 0,993
CR = 4 0,999 0,993 1,000 0,999 0,993
CR = 8 0,999 0,995 1,000 0,999 0,995
CR = 16 0,999 0,994 1,000 0,998 0,994

Class RBBB - Right Bundle Branch Block

Uncompressed 0,998 0,986 0,999 0,992 0,989
CR = 2 0,999 0,993 1,000 0,995 0,994
CR = 4 0,999 0,993 1,000 0,995 0,994
CR = 8 0,999 0,991 1,000 0,996 0,994
CR = 16 0,999 0,991 1,000 0,995 0,993

Class APB - Atrial Premature Beat

Uncompressed 0,993 0,845 0,997 0,892 0,867
CR = 2 0,995 0,868 0,998 0,918 0,892
CR = 4 0,995 0,868 0,998 0,918 0,892
CR = 8 0,995 0,883 0,997 0,902 0,893
CR = 16 0,994 0,890 0,997 0,883 0,886

Class PVC - Premature Vetricular Contraction

Uncompressed 0,996 0,987 0,997 0,962 0,974
CR = 2 0,997 0,988 0,998 0,973 0,980
CR = 4 0,997 0,988 0,998 0,973 0,980
CR = 8 0,997 0,989 0,998 0,973 0,981
CR = 16 0,997 0,985 0,998 0,970 0,978

As future directions, we aim at performing a more extensive study focused on the
impact of the features that compose the features vector of NEAPOLIS in relation to
the different Compression Ratios. For example, if a specific feature loses its importance
in relation of the compression ratio, it can be removed to lighten the classifier, too.

Furthermore, it could be necessary to conduct a comprehensive evaluation in the
context of continuous machine learning, for example with a real-time monitoring IoMT
system, to evaluate how the usage of a compressed ECG signal influence the prediction
effectiveness and if it can be lead to the concept drift phenomenon.
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Finally, we consider also the local prediction as a future line of work. Indeed,
NEAPOLIS could be studied also in a local perspective, i.e., with a refined training
dataset in order to provide detections more accurate at patient level.
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