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Voice-based virtual assistants are becoming increasingly popular. Such systems provide frameworks to developers for building custom
apps. End-users can interact with such apps through a Voice User Interface (VUI), which allows the user to use natural language
commands to perform actions. Testing such apps is not trivial: The same command can be expressed in different semantically equivalent
ways. In this paper, we introduce VUI-UPSET, an approach that adapts chatbot-testing approaches to VUI-testing. We conducted an
empirical study to understand how VUI-UPSET compares to two state-of-the-art approaches (i.e., a chatbot testing technique and
ChatGPT) in terms of (i) correctness of the generated paraphrases, and (ii) capability of revealing bugs. To this aim, we analyzed 14,898
generated paraphrases for 40 Alexa Skills. Our results show that VUI-UPSET generates more bug-revealing paraphrases than the
two baselines with, however, ChatGPT being the approach generating the highest percentage of correct paraphrases. We also tried
to use the generated paraphrases to improve the skills. We tried to include in the voice interaction models of the skills (i) only the
bug-revealing paraphrases, (ii) all the valid paraphrases. We observed that including only bug-revealing paraphrases is sometimes not
sufficient to make all the tests pass.

CCS Concepts: • Software and its engineering → Software evolution; Maintaining software; Software defect analysis.

Additional Key Words and Phrases: voice user interfaces, software testing, NLP
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1 INTRODUCTION

Voice holds significant power as an input method in human-computer interaction, serving as a fundamental mode of
human communication [32]. Voice-based virtual assistants like Google Assistant, Alexa, and Siri have gained rapid
popularity among users due to their extensive integration with external services, such as home automation devices,
and their user-friendly nature. It is projected that the number of voice-based virtual assistants in use will reach a
staggering 8.4 billion by the year 2024 [31]. These virtual assistants enable users to perform various basic tasks, such
as checking the weather or setting timers. Moreover, they provide developers with frameworks that allow for the
expansion of supported actions through the development of specific applications. An example of such applications
is the TikTok Alexa skill. This application enables users to search and discover content on TikTok, check messages,
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© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX


105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

and even start recordings. What distinguishes these voice-based applications from traditional ones is the mode of user
interaction. Instead of relying on a Graphic User Interface (GUI), where users interact with visual elements on a screen,
these applications employ a Voice User Interface (VUI). The VUI allows users to engage with the application using
natural language commands and queries spoken aloud, making the interaction more intuitive and conversational [15].
To enable smooth and accurate interactions, the developers of these applications need to define a Voice Interaction
Model (VIM). The VIM serves as a framework that establishes a connection between the different states or contexts in
which the application can be, and the example utterances or phrases that users may speak to trigger specific actions.
In other words, it maps the various possible ways users can express their intentions to the corresponding actions
or functionalities that the application should execute. By defining a comprehensive VIM, developers ensure that the
voice-based application can effectively understand and respond to user commands and queries, providing a seamless
and user-friendly experience in the absence of a traditional graphical interface. More specifically, the VIM provides an
explicit association between seed sentences and the intents they trigger.

The underlying Artificial Intelligence model of voice-based virtual assistants grants them a significant degree of
tolerance towards slight differences between the spoken utterance and the anticipated one. For example, if the expected
utterance is “what are the news?” and the actual utterance is “read me the news”, the desired action will likely be triggered.
However, if the actual utterance is too far from the expected one (e.g., “what happened today?”), the app might not
behave properly. The fact that users can adopt different utterances to express the same command/query makes the
testing of VUIs far from trivial.

Previous research introduced approaches for automatically testing GUIs [39, 42, 48]. However, research in VUI-testing
is still at its early stages, and only a few solutions exist. One of the state-of-the-practice solutions was experimentally
provided in the Alexa Developer Console (ADC), the environment used to implement and publish Alexa skills. ADC
integrated a Deep Learning (DL)-based tool that allowed developers to generate, given a seed utterance 𝑠 , a set of
paraphrases 𝑃𝑠 . As of February 2023, however, the Automated Test Sets tool has been deprecated and is no longer
available on the developer console. Such a tool, anyways, generated few paraphrases [25] and, therefore, it was unlikely
to cover several corner cases.

Testing VUI-based apps poses the same conceptual problems as testing chatbots. Chatbots provide an interface
in which users write commands, thus using the same type of interaction of VUI-based apps (i.e., based on natural
language) but through different means (text-based vs voice-based). Previous research introduced a rigorous approach
for automatically generating paraphrases for testing chatbots [26], which consists in (i) replacing words and phrases
with synonyms, thus generating a set of candidates, and (ii) filtering candidates based on their similarity with the input
utterance through a combination of metrics. Besides, Large Language Models, like ChatGPT, have recently proven
to be very effective in handling text-related tasks such as summarization, amending, and rephrasing. It is unclear,
however, to what extent both approaches work with VUI-based apps, given that they are based on a different mean of
communication, which results in using expressions of different type and length.

In this paper, we extend our previous work [25] in which we introduce VUI-UPSET (Voice User Interfaces Utterance
ParaphraSe gEneraTor), an approach that adapts chatbot-testing techniques to VUI-testing. Similarly to the approach
proposed by Guichard et al. [26], i.e., the chatbot-testing technique we took inspiration from (GRSBV, from now on),
VUI-UPSET (i) generates a large set of candidate paraphrases and (ii) filters the most promising ones. As for the first
step, while GRSBV replaces a word/phrase at a time with a synonym leaving the others unchanged, VUI-UPSET replaces
also more than one word, thus generating a much larger set of candidate paraphrases. The main point of novelty lies,
however, in the second step: VUI-UPSET uses a DL model for checking the equivalence between the seed sentence and
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each generated paraphrase, while GRSBV relies on several manually crafted metrics. We run an empirical study with
40 open-source Alexa skills to understand how VUI-UPSET compares to both GRSBV [26] and a more sophisticated
approach that relies on Large Language Models, based on ChatGPT. We checked to what extent (i) the generated
paraphrases are valid (i.e., imperatively equivalent to the seed sentence) and (ii) able to reveal bugs in the VUIs. To this
aim, we manually analyzed 14,898 generated paraphrases, totaling 33,835 evaluations. Our results show that an approach
based on ChatGPT generates the highest percentage of valid paraphrases (∼59%) as compared to the ∼45% achieved
by VUI-UPSET and ∼21% by GRSBV. However, VUI-UPSET generates a higher absolute number of valid paraphrases
for most of the skills. We obtained a similar results in terms of percentage of bug-revealing paraphrases generated by
the approaches, which is higher for ChatGPT (27.4%) than for VUI-UPSET. Still, since VUI-UPSET generates a higher
number of valid paraphrases, it also generates a significantly higher number of bug-revealing paraphrases (713 more
than ChatGPT, in total). This means that VUI-UPSET allows developers to test more thoroughly their apps at the cost
of discarding a higher number of irrelevant paraphrases.

To understand whether the generated paraphrases can be used to improve the VIM and, thus, possibly the users’
experience, without introducing bugs when default commands are used, we tried to integrate the generated paraphrases
into the original VIMs. More specifically, we tried to improve the VIMs in three ways: (i) We only added the valid
bug-revealing paraphrases, assuming that they are the ones that might contribute the most to the skill improvement;
(ii) we included all the valid paraphrases, to understand the best improvement achievable by the techniques; (iii) we
tried to modify the VIMs by adding subsets of paraphrases while using the remainder for testing them in a 4-fold cross
validation for each technique, to understand to what extent the generated paraphrases might allow to improve the skill
when unseen utterances are provided . We tested the three improved types of VIM with the whole test suites (which
includes both seed sentences and valid generated paraphrases). We found that, while including only bug-revealing
paraphrases is safe (i.e., the seed sentences still work as intended), it is not sufficient for some skills. On the other
hand, as expected, including all the paraphrases allows to make all the tests pass (except for a single case). Finally, we
observed that improving the VIMs with generated paraphrases almost always results in more robust skills, which is
proven by the fact that the percentage of failing tests is lower for most of the skills when tested on unseen paraphrases
generated by both VUI-UPSET and ChatGPT.

Summarizing, the novel contributions of this paper as compared to our previous work [25] are the following:

• We added comparison of VUI-UPSET with a state-of-the-art approach that relies on Large Language Models
and, specifically, on ChatGPT.

• We doubled the sample of skills taken into account for the empirical study to improve the generalizability of
our results. Specifically, we extended the initial dataset by adding 20 skills for validation from the 20 skills
considered in our previous study. Since for 2 skills we considered in our previous study the VIM had been
updated, we re-ran our experiments also for them.

• We assessed the extent to which the paraphrases generated by VUI-UPSET and ChatGPT can be integrated into
the VIM of the skills to reduce the number of issues.

• We checked the extent to which the sets of paraphrases generated by VUI-UPSET and ChatGPTmight realistically
allow to cover unseen new paraphrases by running a 4-fold cross-validation for both the approaches.

The rest of the paper is organized as follows. Section 2 provides background information and discusses the related
literature. Section 3 provides a motivating analysis in which we report the differences between typical Chatbot and VUI
inputs. Section 4 presents in details VUI-UPSET. Section 5 describes the empirical study that we conducted to evaluate
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the capability of VUI-UPSET in generating imperatively equivalent and bug-revealing paraphrases. We present the
results of the study in Section 6. Section 8 concludes the paper after a discussion of the threats that could affect the
validity (Section 7).

2 BACKGROUND AND RELATEDWORK

In this section we present an overview of the basic concepts behind VUIs and VUI-testing. Then, since we instantiate
the approaches on the framework provided by Amazon Alexa, we explain how a VUI-based app for Alexa (Alexa skill)
works. Finally, we describe in detail the baseline technique we use in our study: The chatbot-testing approach defined
by Guichard et al. [26].

2.1 Voice User Interfaces

A Voice User Interface (VUI) is a type of interface through which users interact with a computer system by providing
spoken commands or queries and receiving primarily spoken responses in return. Although VUIs have been in existence
for quite some time, their widespread adoption has been facilitated by advancements in natural language processing
(NLP) and voice recognition technologies. Typically, a VUI consists of two main components: a speech recognition
component that converts spoken words into text, and an NLP component that matches the natural language input to a
predefined set of commands and triggers the corresponding action. We mainly focus on the latter component. When
users adopt the exact commands defined by the developers, matching the command is easy. However, users might not
be willing to have tight constraints when using VUIs, which are supposed to feel natural as talking to another human
being. Thus, a good VUI should work even when users adopt variations of the commands intended by developers. For
example, the command “list all the recipes” is equivalent to the command “read me all the recipes,” and users should be
allowed to use either of them with the same result. In this context, the problem of testing VUIs is quite hard to address:
It requires to define a set of variations (i.e., paraphrases) of the commands defined by developers and check whether the
same action is triggered.

The field of testing VUIs (and chatbots) is still in its infancy, and only a few recent approaches exist in the literature.
Cabot et al. [11] conducted a study aimed at identifying the relevant testing properties and techniques and their
adaptation for NLP-based bots. Bird et al. [7] tackled the problem of training DL models for tasks related to chatbot
interaction. To this aim, they introduced the “Chatbot Interaction with Artificial Intelligence” (CI-AI) framework, which
augments user-generated data with paraphrases, similar to what we do in VUI-UPSET. Bozic et al. [10] proposed an
approach based on metamorphic testing that automatically verifies the functionality of a chatbot.

As the field of chatbot testing research continues to evolve, new studies are being conducted to explore the usability
testing aspect of chatbots. These studies aim to provide valuable insights and understanding into how chatbots can be
effectively tested for usability purposes [46]. Zhang et al. [57] propose a Panel of Experts (PoE), which is a multitask
network comprising a shared transformer encoder and lightweight adapters. The work aims to develop a model-based
automatic dialogue evaluation metric (ADEM) that can effectively measure the quality of conversational agents across
various domains. Coca et al. [14] present a framework for generating synthetic schemas which uses tree-based ranking
to jointly optimise lexical diversity and semantic faithfulness.

According to the literature, the development of a good chatbot requires a continuous process that relies on various
high-quality data. Therefore, previous work [44] introduced approaches for generating paraphrases through the use of
different techniques. Automatically generating a test case in this context means creating natural language sentences,
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"intents": [
"name": "RegisterBirthdayIntent",
"samples": [

"register my birthday",
"record my birthday",
"remember my birthday",
"register my date of birth"

]
]

Fig. 1. Example of voice interaction model.

given as input to the VUI (test data), and checking if the response behavior (which usually includes the target state of
the app) is correct (test oracle).

Generally, the response behavior consists in (i) changing the state of the app and, optionally, (ii) providing a spoken
response. A natural way of generating test cases in this context is by using an approach inspired by metamorphic
testing [49]: Given an utterance 𝑢 for which the response behavior 𝑏𝑢 is expected, it is possible to change the utterance
to an equivalent one (i.e., a paraphrase), 𝑢′, and assert that the executed behavior is still 𝑏𝑢 .

Traditional approaches for utterance paraphrasing, such as hiring experts or crowdsourcing, are costly, time consum-
ing, and with their own trade-offs in terms of quality [29, 53]. For example, J.Bird et al. [8] present the transformer-based
Chatbot Interaction with Artificial Intelligence (CI-AI) framework for task classification. The intelligent system enhances
human-generated data by utilizing artificial paraphrasing techniques to create a substantial training dataset. Automatic
paraphrasing is becoming increasingly appealing as a viable alternative, offering the potential for a rapid, scalable, and
cost-effective testing process. A recent work was introduced by Li et al. [33] in specifically presented a study on voice
interface testing, introducing VITAS, a framework for testing VUIs in VPA applications by simulating a multi-state
interaction. On the other hand, VUI-UPSET addresses a very specific problem (i.e., the generation of valid paraphrases)
regardless of how the skill reaches the state from which the desired activation phrase is to be used.

2.2 Alexa Skills and Developer Console

Amazon’s cloud-based voice assistant, Alexa [2], serves as the “intelligence” behind devices like Amazon Echo. The
applications developed for Alexa are referred to as skills, and developers utilize the Amazon Developer Console
(ADC)[4], an integrated environment, for the development, testing, and distribution of these skills. A skill consists of
two main components: the voice interaction model and the programming logic. The voice interaction model defines the
user utterances that can activate various functionalities within the programming logic. Specifically, it associates seed
utterances with specific intents, which in turn trigger corresponding handlers in the programming logic to generate
a response for the user. Fig. 1 reports an example of the structure of a voice interaction model of the skill “Happy
Birthday”. The name field refers to the name of the intent to invoke when one of the seed sentences in the samples

array is matched.
Alexa is tolerant to small variations between the utterance pronounced by the user and the expected seed utterance:

For example, if the seed utterance is “register birthday” it is most likely that Alexa will still trigger the same intent for
the pronounced utterance “register my birthday”. This is not necessarily true when the equivalence of the utterances is
less trivial (e.g., when the user pronounces “take note of my birthday”). Therefore, the larger the set of seed utterances
provided by the developer, the higher the chance that Alexa recognizes the users’ intent and triggers the desired action,
thus improving the perceived quality of the app. Seed utterances might contain slots, i.e., placeholders that allow users
to give inputs [3]. For example, slots can be used to recognize the date of birth of the user pronounced in the sentence
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Table 1. Example of Alexa Skill stateful

Happy Birthday Skill

User VUI

take note on my birthday
when is your birthday?

the 8th
of which month?

December
...

“I was born on January 1st, 2000”. The ADC can be used to test a given skill by providing a set of utterances associated
with the expected intent that will be triggered (annotation sets). This feature is available in the NLU-evaluation tool of
the ADC [6]. Such a tool associates to each utterance in the annotation set a binary value (PASSED or FAILED) based on
the fact that the actual intent equals or not the expected one.

There are some tools that facilitate the generation of annotation sets to test the skills. KayLearch [30] relies on using
a grammar to generate variants of the given utterances. However, such a tool requires developers to manually define
the grammar. ADC provides a feature that allows developers to automatically generate paraphrases for seed utterances
to either test their skill or to enlarge the set of supported seed utterances. Also, it is important to note that some Alexa
skills are state-based therefore the user can interact with VUIs by going through multiple interaction states for a single
request. We report an example of the use of the Alexa Happy Birthday Skill in Table 1.

The ADC tool for generating paraphrases allows developers to choose among three alternatives: (i) Interaction
model, which simply creates the tests containing the sample utterances from the voice interaction model; (ii) Frequent
Utterances, which creates tests based on the utterances frequently used in the simulation step by the users, and (iii)
Utterances Recommendation Engine, which automatically generates paraphrases by varying the seed utterances in the
voice interaction model. Since the first two alternatives are semi-automatic, in our study we focus on the fully-automated
alternative, i.e., the Utterances Recommendation Engine. From now on, when we refer to the ADC tool we are specifically
referring to the Utterance Recommendation Engine. While it is not entirely clear how such a feature works, the official
documentation mentions that it is based on machine-learning [5]. There are several papers presented by researchers in
the Amazon Alexa team [43, 50, 51] describing possible solutions that might have been adopted in the recommendation
engine. If this is the case, the approach behind the Utterances Recommendation Engine is based on encoder-decoder
deep recurrent neural networks.

2.3 Generating Paraphrases for Testing Chatbots

While VUIs have their own peculiarities, they are conceptually similar to the textual interface used in chatbots [9]. A
chatbot is a software system designed to answer human questions in text format, according to the specifications for
which it was designed. Over time, chatbots have embedded increasingly sophisticated algorithms to create more natural
and complex dialogues. Therefore, we describe below in details the only approach involving both (i) a paraphrase
generation and (ii) a filtering phase (to the best of our knowledge) defined in the literature to generate paraphrases for
testing chatbots, since we use it a starting point for our approach and as a baseline in our comparison [26].

Guichard et al. [26] introduce a rule-based approach (as opposed to the data-driven paradigm) that generates
paraphrases aimed at evaluating the robustness of chatbots. For simplicity, from now on we call such an approach

6
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GRSBV (from the initials of the authors’ surnames). GRSBV involves, as a first step, the selection of the original
utterances present within the intent of the conversational agent. The authors assume that all input utterances are
grammatically and syntactically correct with no spelling mistakes. The workflow of GRSBV support the generation of
candidate paraphrases through lexical substitution, and the filtering of non-equivalent paraphrases through a set of
metrics. We describe such steps in details below.

2.3.1 Generation of Candidate Paraphrases. First, GRSBV transforms the input utterances to lower-case as a prepro-
cessing step to avoid case sensitivity issues. The utterance is then tokenized and each token is tagged with its respective
Part-of-Speech (PoS). GRSBV performs dependency parsing among tokens to identify phrasal verbs. Tokens that appear
in the stop word list are left as they are. For each of the remaining ones, GRSBV runs lemmatization and it uses the
lemmas for finding synonyms in a lexical database, i.e., WordNet [41]. The synonyms obtained are then inflected
(i.e., pluralization, singularization, and conjugation), based on the inflection of the respective original token before
lemmatization. To increase the likelihood to generate semantically equivalent candidate paraphrases, GRSBV changes
a token at a time with each of its respective synonyms. Hence, it does not consider the simultaneous substitution of
multiple tokens in the input utterance.

2.3.2 Filtering Paraphrases. To further ensure the quality of the generated paraphrases, GRSBV combines some of
the strategies proposed by Hassan et al. [27] to score the candidate paraphrases to filter out poor ones. Many words
have different meanings depending on the context in which they are found. Given a candidate paraphrase 𝑝 generated
from the input utterance 𝑖 , and the word in the original utterance𝑤𝑖 which was replaced with a synonym𝑤𝑝 in the
paraphrase, the following metrics are computed.

Language Model (LM). A 5-gram language model is built using an English corpus. Then, it is used to predict the
probability of every token in 𝑝 from the 6th to the last one, given the previous five tokens. The LM score is computed as
the average probability obtained for such tokens. If the candidate paraphrase contains 5 or less tokens, the assigned
score is 0. Rationale: The higher the naturalness of 𝑝 , the higher the likelihood that 𝑝 is syntactically correct.

Translation Pivoting (TP). The candidate paraphrase 𝑝 is translated into a foreign language (i.e., French) and it
becomes 𝑝𝐸→𝐹 . Then, 𝑝𝐸→𝐹 is translated into the original language (i.e., English) again, and it becomes 𝑝𝐸→𝐹→𝐸 . If
𝑤𝑝 is still present in 𝑝𝐸→𝐹→𝐸 , the TP score is 1; otherwise, it is 0. Rationale: If 𝑤𝑝 makes sense in the context, the
translation in English of the equivalent sentence in the foreign language still contain𝑤𝑝 .

Word Vectors (WV). The Word2Vec model [40] is used to compute the lexical similarity between𝑤𝑝 and all the
tokens in 𝑖 which are not stop-words. WV is equal to the average of such values. Rationale: If𝑤𝑝 fits the context, the
WV score will be higher (i.e., it will be similar to the other tokens in 𝑖).

Web Search (WS). A Web Search engine (specifically, Microsoft Bing) is used to search 𝑝 (exact match of the whole
sentence). The WS score is equal to the total number of web pages retrieved. Rationale: The higher the number of pages
retrieved, the higher the likelihood that 𝑝 is semantically equivalent to the input sentence.

Word-Sense Disambiguation (WSD). The Simplified Lesk algorithm implemented in Pywsd [52] is used to retrieve
the most likely sense of𝑤𝑖 . If the synset of the most common sense of𝑤𝑖 , identified by using WordNet [41], contains
𝑤𝑝 , the WSD score is 1; otherwise, it is 0. Rationale: If a synonym related to the most common meaning of a word is
used, it is more likely that 𝑝 is semantically equivalent to the input sentence.

Lexical Frequency (LF). The synsets related to the all the senses of𝑤𝑖 are identified through WordNet [41]. The LF
score is equal to the number of synsets for that contain𝑤𝑝 . Rationale: The higher the number of senses for which𝑤𝑝 is
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a valid alternative of𝑤𝑖 , the higher the likelihood that𝑤𝑝 is a synonym that preserves semantic equivalence, regardless
the sense of𝑤𝑖 .

The metrics are then normalized and linearly combined using weights identified through a genetic algorithm. Finally,
a threshold (0.59) is used to filter out paraphrases not sufficiently good. It is worth noting that GRSBV requires the
execution of many different models and tools, some of which require training (e.g., LM) or cannot be used for free (e.g.,
WS and TP). This makes the approach hard to reproduce and slow in the execution.

2.4 Large Language Models for Paraphrase Generation

In recent years, large-scale language models such as GPT-4 have revolutionized natural language processing (NLP). These
models are designed to process and generate human language and have a wide range of applications, including natural
language understanding, text generation, language translation and more [47, 54]. One of the best known large language
models recently introduced is GPT-4, which stands for “Generative Pre-trained Transformer 4.” GPT-4 is a product of
OpenAI and is known for its ability to understand and generate human-like texts in various languages and domains
[18]. Paraphrase generation and identification tasks are the most important in the field of natural language processing.
The use of techniques such as language models are critical for recognizing or creating sentences that convey similar
meanings [45]. C. Hegde and S. Patil exploit the generation capability of GPT-2 to generate unsupervised paraphrases
from labeled data [28]. Witteveen and Andrews introduced a valuable technique that exploits the capabilities of these
large language models for generating paraphrases in different textual domains. Their approach is not only effective in
generating sentence-level paraphrases, but also extends its usefulness to longer portions of text, such as paragraphs,
without requiring text segmentation [55].

3 ARE VUI INPUTS DIFFERENT FROM CHATBOT ONES?

The need for this study and for a new approach is mainly motivated by our assumption that chatbot inputs are intrinsically
different from VUI inputs. To support our hypothesis, we run a preliminary analysis to compare the two populations of
input sentences. We considered all the utterances extracted from the Voice Interaction Models (VIMs) of the 40 skills
we use in our main study (reported in Section 5) as examples of VUI inputs. Instead, we used a set of conversational
datasets for chatbots [19, 21–23] as examples of chatbot inputs. We randomly sampled 100 instances from both and
compared them in terms of length (median number of characters and mode number of words) and readability (using
the Coleman-Liau Index [34]).

The results of this analysis show that typical chatbot input sentences are longer than VUI input sentences (46 median
number of characters against 19, i.e., ∼59% less). This result is confirmed if we look at the mode number of words, which
is 9 for chatbot inputs and only 4 for VUI inputs (∼56% less). Finally, when we take readability into account, we can
observe that chatbot input texts are much more readable than VUI input texts (4.6 and 1.6, respectively). This suggests
that the two sets of sentences are intrinsically different.

To qualitatively show how chatbot and VUI inputs are different, we report some examples. Examples of chatbot
inputs are “I often watch movies with my girlfriend, and I want to make sure whatever we watch, it’s something we can

both enjoy and and relax while watching”. Instead, examples of VUI inputs are “watch video”. As it can be noticed, the
VUI inputs are much more direct and imperative than chatbot inputs.
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Fig. 2. The workflow of VUI-UPSET.

4 GENERATING PARAPHRASES FOR ROBUST TESTING VUIS

VUI-UPSET (Voice User Interfaces Utterance ParaphraSe gEneraTor) is an approach that, given a seed sentence 𝑠
generates several imperatively equivalent paraphrases of 𝑠 , 𝑃𝑠 . A paraphrase is “imperatively equivalent” to a seed
sentence if a human might use the two sentences interchangeably to express the same intent and, therefore, to trigger
the same action. For example, the sentence “record my birthday” is semantically different from the sentence “don’t
forget my birthday”; however, if users adopt the latter they most likely want to trigger the same action they would
express with the former. VUI-UPSET uses the same workflow defined in the work by Guichard et al. [26]. First, it
generates a set of candidate paraphrases, and then it filters them. Compared to the approach by Guichard et al. [26]
there are three main variations. First, we use Part-of-Speech (PoS) tagging on the seed sentence and define strategies to
handle words based on their PoS. Second, we change more than one synonym at a time to generate a higher number of
candidate paraphrases. Third, we replace the convoluted and expensive filtering technique used in [26], which requires
the computation of six metrics, with a simpler approach that relies on a Deep Learning model trained to check the
semantic equivalence of two sentences. Fig. 2 depicts the workflow of VUI-UPSET.

4.1 An example of Paraphrase Generation

In Fig. 3, we present a concrete example of the use of VUI-UPSET in the context of the skill “Happy Birthday.” Specifically,
during the candidate paraphrase generation phase, the initial step involves the selection of seed sentences from the
voice interaction model. In this case, one of the selected seeds is “record my birthday.” In the next step, we perform
Part-of-Speech (PoS) labeling each word in the sentence. As a result, the words “register”, “my”, and “birthday” are
tagged with VB (verb, base form), PRP (possessive pronoun), and NN (common noun), respectively. Next, we extract
the synonyms for “register” (e.g., “record” and “file”) and “birthday” (e.g., natal day). We do not look for synonyms of
the word “my” because of its PoS (i.e., pronoun): instead, we use our pre-defined rules (detailed below) to generate
alternative forms for such a word (e.g., we omit the word or we replace it with “our”). At this point, we generate all
the combinations of the alternative forms of each word extracted for the three original words in the seed sentence
and generate a set of candidate paraphrases (e.g., “record birthday” and “file our natal day”). Finally, in the “Filtering
Paraphrases” stage, we use the RoBERTa model to decide which generated paraphrases we should keep. Specifically, we
give each generated paraphrase (e.g., “record birthday”) and the original seed sentence (“register my birthday”) as input
to the model, and it returns a value between 0 and 1. We discard all the paraphrases for which such a value is lower
than a threshold (we provide more details on this aspect and on the tuning of the threshold later on). For example, we
keep “record birthday” because the model computes a high similarity value (i.e., 0.82), while we discard “file our natal
day” because its similarity value is lower, according to the model (i.e., 0.67).
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Fig. 3. Example “Happy birthday Skill” VUI-UPSET.

4.2 Generation of Candidate Paraphrases

First, the developer selects the seed sentences of interest. Then, for each of them, we use a PoS tagger to assign each
word with a PoS. We extract the set of synonyms and PoS-sensitive variations for each word (or phrase) in the seed
sentence, and we combine such sets to generate the candidates (using the cartesian product). We describe below in
details all the steps.

4.2.1 Selection of Seed Sentences. To ensure the generation of good quality utterances, the developer manually selects
the seed utterances for which paraphrases will be generated. We do not generate paraphrases for all the seed sentences
for two reasons. First, we want to select only grammatically correct sentences. This is also required by GRSBV [26],
as otherwise grammatically incorrect paraphrases would be consequently generated. An example of grammatically
incorrect seed sentence is “I not sure”. Second, we want to exclude sentences that are minor variations of other sentences.
We do this because our approach would generate, as a consequence, very similar (or identical) paraphrases starting from
them. Such near-clones would not be useful in practice since Alexa (like other virtual assistants) is able to automatically
compensate for such small variations. For example, if both utterances “where is my order” and “where’s my order” are
present, we only keep one of them (e.g., the first one). Finally, we exclude seed sentences (i) containing slots (i.e.,
variable parts of the sentence), as handling them goes beyond the scope of VUI-UPSET, and (ii) appearing in the default
skill intent (e.g., AMAZON.HelpIntent) because, even though they can be expanded, they are already handled by the
framework.

4.2.2 PoS Tagging. The idea behind the generation of the new utterances is to generate paraphrases that are imperatively
equivalent to the set of seed sentences manually selected in the previous step. At this point, in this second step, it is
necessary to analyze the syntactic structure of the seed sentence. This can be achieved by performing a grammatical
analysis of the sentence, i.e., the PoS tagging. PoS tagging is a NLP task in which the goal is to find the part of speech
corresponding to each word contained in a sentence. For this purpose, VUI-UPSET relies on the open source Stanford
CoreNLP tool [38]. Based on the grammatical analysis performed, PoS tagging associates each word with a tag. We
consider all 36 tags supported by Stanford CoreNLP. We defined a set of rules for each type of PoS that will be used in
the paraphrase generation phase, as described in the next section.

4.2.3 Combination of Synonyms and Alternative Forms. First, we run dependency parsing using Stanford CoreNLP to
identify and retrieve dependencies of interest among words. This is particularly important for finding and correctly
handling phrasal verbs [26]. Then, for each token, we verify that it is not a stop word by using a predefined stop word
list [1]. In case it is classified as a stop word it remains unchanged in all the generated paraphrases. At this point, based
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Table 2. Rules for the utterance generation based on the Part-of-Speech Tags.

Tag Name Action Tag Name Action

CC Coordinating Conjunctions Unchanged PRP Possessive Pronouns {my | our } or Omitted
CD Cardinal Numbers Unchanged RB Adverbs Synonyms or Omitted
DT Determiners Unchanged RBR Comparative Adverbs Unchanged
EX Existence There Unchanged RBS Superlative Adverbs Unchanged
FW Foreign Words Unchanged RP Particles Unchanged
IN Prepositions and Sub. Conjunctions Unchanged SYM Symbols Unchanged
JJ Adjectives Synonyms or Omitted TO to Unchanged
JJR Comparative Adjectives Synonyms or Omitted UH Interjection Unchanged or Omitted
JJS Superlative Adjectives Synonyms or Omitted VB Verbs (base form) Synonyms
LS List Item Markers Unchanged VBD Verbs (past tense) Synonyms
MD Modal Verbs Unchanged VBG Verbs (gerund or present participle) Synonyms
NN Common Nouns Synonyms VBN Verbs (past participle) Synonyms
NNS Common Nouns (Plural) Synonyms VBP Verbs (non 3rd person singular present) Synonyms
NNP Proper Nouns (Singular) Synonyms VBZ Verbs (3rd person singular present) Synonyms
NNPS Proper Nouns (Plural) Unchanged WDT Wh-determiner Unchanged
PDT Predeterminers Unchanged or Omitted WP Wh-pronoun Unchanged
POS Possessive Endings (’s) Unchanged WP Possessive wh-pronoun Unchanged
PRP Personal Pronouns {me | her | him | us } or Omitted WRB Wh-adverb Unchanged
PRP Personal Pronouns {I | you | she | he | we | they } or Omitted

on the PoS tagged in the previous step, we apply a consequent strategy, as described in Table 2. Unchanged means that
the word must be left in the sentence as is in all the generated paraphrases. Some words, indeed, should/can not be
modified. For example, prepositions or foreign words are never changed. Omitted means that the word can be completely
removed without altering the meaning of the sentence. Therefore, some paraphrases will contain such a word, while
others will not. Synonyms means that the word can be replaced with a synonym. For some specific words, such as
pronouns, we manually identified and determined a set of alternatives. For example, personal pronouns can be replaced
with “my” or “our”. All the phrases for which VUI-UPSET decided to use a “Synonyms” strategy are lemmatized and we
use WordNet [41] for finding, for each of them, the complete list of synonyms. At this point, each phrase is represented
as a set of alternative forms, based on the previously described strategies. We use the cartesian product to generate
candidate paraphrases. Finally, similarly to Guichard et al. [26], we inflect the replaced words as the original words.

For example, if a word was plural in the seed sentence, its variation is pluralized as well in the paraphrase. We use the
Pattern approach [16], available as a Python library, to achieve this goal. For example, let us consider the seed sentence
“register my birthday”. From the PoS analysis we get (register, VB) (my, PRP) (birthday, NN). Then, in the paraphrase
generation step we are going to consider the following combinations: {remember|file|record|...} {|my|our} {birthday|natal
day} and finally we get a set of candidate paraphrases (e.g., record my birthday, record our birthday, file our birthday,
record our natal day, remember birthday).

4.3 Filtering Paraphrases

It is possible that some paraphrases generated in the previous step are not fully equivalent to the seed sentence since
synonyms might refer to different meanings of a word. For example, the candidate paraphrase “time mark” might be
generated from the seed sentence “time check”. While “mark” is a synonym of “check”, the two words have different
senses in this context (i.e., “control” in the seed sentence and “symbol of ticking off” in the paraphrase). Therefore, it is
necessary to discard paraphrases that are not imperatively equivalent to the seed sentence. To that end, VUI-UPSET
integrates an approach based on DL to filter out the generated sentences that are not valid. Specifically, we use a
semantic similarity model, RoBERTa [35], which is a state-of-the-art NLP model, extension of the BERT model. RoBERTa
has the same architecture as BERT [17], but uses a Byte Pair Encoding (BPE) as a tokenizer and a different pre-training
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objective. We used a pre-trained model available on HuggingFace [20]. In particular, we used the “large” version of
RoBERTa, trained on the STS Dataset [12], containing five English-language corpora of varying size and domain,
totaling over 160GB of uncompressed text, for 500k steps. Given a pair of sentences, the model returns a score between 0
and 1, which indicates the likelihood that the two sentences are imperatively equivalent. We run RoBERTa for each pair
⟨seed, paraphrase⟩; we discard paraphrases for which the returned score is below a given threshold 𝑘 , which indicates
the minimum similarity over which two sentences should be considered semantically equivalent. We discuss in detail
how we tuned such a parameter in Section 5.

5 EMPIRICAL STUDY DESIGN

The goal of our study is to evaluate the effectiveness of VUI-UPSET in the automatic generation of paraphrases for
testing VUI-based apps. In particular, we want to assess: (i) the semantic equivalence between the input seeds and the
utterances generated by VUI-UPSET (ii) the extent to which our approach allows developers to identify bugs in the
behavior of an Alexa skill and (iii) the extent to which VUI-UPSET allows developers to reduce the number of bugs by
including imperatively equivalent generated sentences in their skills. As baseline, we use the approach by Guichard
et al. [26].

We answer the following research questions (RQs):

• RQ1: To what extent does VUI-UPSET generate valid paraphrases? This RQ aims at evaluating the quality of the
paraphrases generated by VUI-UPSET in terms of imperatively equivalence compared to the original (seed)
sentence.

• RQ2:To what extent do the paraphrases generated by VUI-UPSET reveal bugs? With this RQ we want to understand
if VUI-UPSET allows developers to generate a higher percentage and absolute number of paraphrases that
reveal bugs compared to the baseline.

• RQ3:To what extent do the paraphrases generated by VUI-UPSET and ChatGPT reduce bugs? With this RQ we
want to understand if VUI-UPSET allows developers to reduce the percentage and absolute number of bugs in
their Alexa skill by adding the imperatively equivalent paraphrases generated by VUI-UPSET.

5.1 Study Context

To answer our RQs, we have performed the evaluation on a dataset of 40 skills. These skills have been manually
selected starting from the list of most popular open source skills on GitHub (with popularity based on number of stars).
Several skills have been discarded since not properly working, while for the ones working we checked if both the voice
interaction model and the programming logic were available. We only considered interaction models defined for the
English language (en-US) and focused on skills written in JavaScript, as it is commonly used to implement Alexa skills.

We excluded skills with multi-step dialogues between Alexa and the user. The reason for this choice is that the
management of skills that involve an interaction based on a continuous dialogue must be done considering the states
that allow to predict the possible responses (e.g., through the use of a graph of states). This goes beyond the scope of
VUI-UPSET. Moreover, each selected Alexa skill was imported into the Amazon Developer Console to be verified. We
executed some basic samples defined in the interaction model of the skill, excluding again the ones for which we did
not observe a correct functioning (i.e., no correspondence between the Voice Interaction Model and the Programming
Logic). Table 3 describes all the Alexa skills selected for our study.
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Table 3. Skills used for the empirical evaluation and their characteristics.

# seeds # generated paraphrases
Skill Description total selected GRSBV VUI-UPSET

Ilama facts provides facts and trivia 8 8 15 35
Happy birthday stores birthday information 6 6 103 211
City guide recommends activities in the city 7 6 59 23
Quiz game quiz game about a topic 6 5 66 268
Scheduling schedules calls and appointments 9 9 193 102
Name the show guess game about TV shows 18 15 204 167
Berry bash quiz game about a topic 25 20 371 769
History facts provides interesting historical

facts
7 4 12 13

Particle cloud provides access to Particle de-
vices

19 14 298 391

Greeting sender order management and sharing 17 16 382 319
Button trivia single- and multi-player quiz

game
24 17 373 523

Video app allows to play a video 8 8 112 39
Salesforce identifies opportunities on Sales-

force
12 8 99 1203

Store Amazon pay VUI app for the Amazon Store 45 24 557 1168
Timers manages custom timers 16 11 407 473
Pocket manages lists of items 21 11 178 1421
Piano player teaches the piano 9 7 172 201
Week calendar allows to plan the vacation 12 7 462 1342
Crash notification demonstrates messaging for dif-

ferent errors
14 9 231 78

Memory memory-matching game 4 4 74 171
Radio allows the radio to be managed 15 11 246 41
Trading teacher teaches options trading to end

users
31 23 90 78

College finder query the public dataset of col-
leges

102 61 1004 6115

Feed reader allows you to play your feed 108 51 1177 4693
Premium fact allows you to add new categories 16 14 36 35
Humour me provides funny stories 12 10 176 994
Multistream audio provides multiple audio, event

and control managers
15 5 152 836

Premium hello world adds greetings in several lan-
guages

23 21 317 329

Voice developer allows the voice to be edited and
provides news

48 36 848 3826

Tasty beverage allows you to create a list 18 13 271 52
Weather wear offers climate-appropriate cloth-

ing options
13 11 236 791

Next prayer shows prayer times for Japan 4 3 35 47
Math facts provides arithmetic exercises 7 4 49 44
Forget me not VUI app for last minute re-

minders
11 4 55 84

Charity roster allows to get to know charities
and make donations

12 8 60 159

Cyclist assistant provides info to cyclist 5 5 117 155
Internet archive VUI app of Internet Archive 19 12 202 263
My barkeeper store information on cocktails 14 110 1127 12385
Girls volleyball info on volleyball match 14 9 168 15
Boys basketball info on basketball match 5 5 77 6

Total 7 79 631 10,811 39,865
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5.2 Experimental Procedure

We compare VUI-UPSET to two baselines: GRSBV, described in Section 2, and a new baseline based on Large Language
Models and, specifically, ChatGPT. We needed to re-implement GRSBV since it is not publicly available. We carefully
followed the indications provided in the paper to achieve this goal. As for the other baseline, we used ChatGPT [13] and,
specifically, we employed the GPT-3.5-turbo model via the official APIs. Given a seed sentence, we used the following
prompt to generate paraphrases through such a model: “Given the following input sentence ‘seed-sentence’, generate all
possible paraphrases that you consider semantically equivalent to it”. Note that we did not explicitly specify a maximum
number of paraphrases but let the model autonomously decide based on its confidence for the seed sentence at hand.
This means that for some sentences it might generate many paraphrases, while for others just a few of them.

To answer RQ1, we evaluate the semantic equivalence between the sentences generated by VUI-UPSET and the two
baselines. First, we manually selected the seed sentence for each Amazon Alexa skill in our dataset. In the selection of the
utterances to consider, we chose the ones that (i) allowed us to cover all the intents of the skill, (ii) were well-constructed
to satisfy the requirements of both VUI-UPSET and GRSBV (see Section 4), and (iii) did not contain slots. Second, we
executed VUI-UPSET and GRSBV providing as input the selected seed sentences, obtaining for each skill a set of test
utterances filtered by the semantic equivalence model.

The number of paraphrases generated by VUI-UPSET, GRSBV and ChatGPT was very high (39,865, 10,811 and
4,814, respectively), and manually evaluating their equivalence with the corresponding seed sentence would have
been infeasible. Therefore we randomly selected a sample of the utterances generated with each approach for manual
evaluation. We choose the size of the sample for each skill/approach so that it allows us to have a 5% margin of error
with 95% confidence level. In total, we selected 6,291 instances for VUI-UPSET, 5,132 for GRSBV and, 3,475 for ChatGPT.
As a result, in total, we evaluated 14,898 paraphrases.

Each generated paraphrase was independently evaluated by at least two authors, with three authors involved overall
(i.e., each paraphrase was assigned to two of the three authors involved in the manual validation). More specifically,
each author checked whether the generated paraphrase and the respective seed sentence were imperatively equivalent.

Conflicts that arose after the comparison of the evaluations were resolved through a discussion among the three
evaluators aiming at reaching consensus. The two evaluators originally assigned to each paraphrase had disagreements
in 1,938 cases for VUI-UPSET (i.e., ∼30%), 1,146 cases in total for GRSBV (i.e., 22%) and 955 in total for ChatGPT (i.e.,
∼28%) while independently evaluating the imperatively equivalent of the paraphrases. After discussion, consensus
was reached for all the paraphrases. In total, we manually performed 33,835 comparisons. Most of the conflicts arose
in connection with borderline situations in which the paraphrases were interpreted differently by the evaluators.
Furthermore, the high number of conflicts often relate to many paraphrases (e.g., when an unusual synonym was used
for a given word in the seed sentence or the use of the specific slang). For example, from the seed sentence “register my
birthday” a generated paraphrase is “file my date of birth”. The use of the verb “file” instead of “register” is imperatively
equivalent, but unusual in this context. One of the evaluators reported the whole paraphrase as equivalent, while the
other did not. The same happened for all the paraphrases that used such a synonym.

For each skill we measure the percentage of imperatively equivalent paraphrases. Then, given such percentages, we
compare the three approaches by using the Wilcoxon Signed-Rank test [56]. The null hypothesis is that there is no
difference between VUI-UPSET and the baseline in terms of percentage of imperatively equivalent generated paraphrases.
We reject the null hypothesis if the 𝑝-value is lower than 0.05. We also compute the effect size to quantify the magnitude
of the significant differences we find. We use Cliff’s Delta [37] since it is non-parametric. Cliff’s delta lays in the interval
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[-1, 1]: The effect size is negligible for |𝛿 | < 0.148, small for 0.148 ≤ |𝛿 | < 0.33,medium for 0.33 ≤ |𝛿 | < 0.474, and large
for |𝛿 | ≥ 0.474. Finally, we estimate the absolute number of imperatively equivalent generated paraphrases over the
whole population for each skill 𝑠 and approach 𝑎. To do this, we consider the percentage of imperatively equivalent
generated paraphrases𝐶𝑠

𝑎 computed on the sample, the total number of paraphrases generated with 𝑎 for 𝑠 ,𝐺𝑠
𝑎 , and the

5% margin of error given by the considered sample size (95% confidence level). Specifically, we compute the confidence
interval of the number of imperatively equivalent generated paraphrases for 𝑠 as 𝑃𝑠𝑎 = (𝐶𝑠

𝑎 ± 0.05) ×𝐺𝑠
𝑎 .

To compare the absolute number of imperatively equivalent generated paraphrases, we cannot check the difference
in terms of absolute number of imperatively equivalent paraphrases found in the manually evaluated samples: Such
numbers, indeed, strongly depend on the sample size, and we will have different sample sizes for the different approaches.

For example, if we have two samples of 10 and 100 paraphrases for the two approaches and we find that 9 out
of 10 are imperatively equivalent in the first sample while 11 out of 100 are imperatively equivalent for the second
sample, it is most likely that the first one would have achieved better result than the second one if we evaluated the
whole population. Therefore, we compare the confidence intervals identified on the estimated number of imperatively
equivalent paraphrases over the whole populations for each skill independently. If there is no overlap between the
intervals of the two approaches, we say that one generates a significantly higher number of imperatively equivalent
paraphrases for a given skill as compared to the other (with 95% confidence level). If there is an overlap, instead, we
cannot exclude that the difference is due to the chance.

To answer RQ2, based on the results obtained in RQ1, we define and execute test cases containing the generated
paraphrases considering only the valid paraphrases we manually identified to answer RQ1. The execution of the
generated test cases is performed through the NLU evaluation function from the developer console. Test cases are
marked as PASSED when the actual intent activated for a the related paraphrase in the virtual version of Alexa matches
the expected intent indicated in the VIM for the seed sentence from which the paraphrase originates. Otherwise, they
are marked as FAILED.

For each skill, we compute the percentage of generated bug-revealing paraphrases by computing the number of
FAILED test cases divided by the total number of valid paraphrases. We do this to understand if any of the approaches is
able to outperform the other in terms of quality of the generated paraphrases. Then, we estimate the absolute number
of bug-revealing paraphrases for each approach in the original population of paraphrases. To do this, we use a similar
process used for RQ1. We start from the number of imperatively equivalent paraphrases (both the lower and the upper
bound of the confidence interval) to estimate the number of bug-revealing paraphrases. Also in this case, we consider
5% margin of error for both such values. We make sure that such an interval is lower-bounded by the number of
actually found bug-revealing paraphrases in the sample (we are certain that at least such a number of bug-revealing
paraphrases exist) and upper-bounded by the number of generated paraphrases. We use the Wilcoxon signed-rank
test [56] to compare the percentage of bug-revealing paraphrases. The null hypothesis is that there is no difference
in the percentage of bug-revealing paraphrases generated by the approaches. Also in this case, we report the Cliff’s
Delta [37]. To compare the absolute number of bug-revealing paraphrases, we use an analogous approach used in RQ1:
If there is no overlap between the confidence intervals of the three approaches, we say that the one that generates a
larger number of bug-revealing paraphrases for a given skill is significantly better than other for such a skill (with 95%
confidence level).

To answer RQ3, we conducted three separate assessments where we add the paraphrases generated with VUI-UPSET
and ChatGPT in the voice interaction model for the respective skills, to check whether they help in fixing the bugs
detected using process described for RQ2. We focused on the paraphrases that we manually judged as imperatively
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equivalent in RQ1, since those are the only ones which would make sense adding to the interaction model. As a first
analysis, we added to the VIM only the paraphrases that detected a bug in RQ2 (i.e., those for which the skill was
not properly working) and tested that (i) the original utterances present in the skill (i.e., the ones implemented by
the original developers) were still properly working as expected, with no “damage” done by the added paraphrases;
and (ii) the complete set of original utterances plus the added paraphrases were now handled correctly by the voice
interaction model (thus, the paraphrases fixed the bugs previously observed in RQ2). As a second analysis, we added to
the VIM all the imperatively equivalent paraphrases (not only the bug-revealing ones) to check if it would make sense
for a developer to just add all valid paraphrases as a bulk without worrying to discriminate whether the paraphrase
was bug-revealing or not. As a third analysis, we performed a four-fold cross validation, to understand how the skill
behaves when tested on utterances completely different from the ones in the which it has been trained (in the VIM).
This analysis allows us to estimate the actual improvement of the skill in terms of robustness. Specifically, we performed
four evaluations for each skill by dividing the entire set of imperatively equivalent paraphrases in four folds. We used,
in turn, three of these folds (75% of the instances) for improving the voice interaction model of the skill (we always
keep the seed sentences in the VIM), and the remainder fold (25%) for testing this new version of the skill. For all the
combinations previously described, i.e., testing original utterances only or all added paraphrases with two different sets
of paraphrases (failing only or all imperatively equivalent), we compute and report, for each skill, the absolute number
of failed test cases, the percentage of failed test cases, and the estimated number of bugs that could be revealed by using
the complete set of paraphrases generated by VUI-UPSET (similarly to RQ2).

5.3 Tuning the Semantic Threshold for VUI-UPSET

VUI-UPSET requires the tuning of a threshold, 𝑘 . We empirically determine such a threshold by running VUI-UPSET on
a set of 10 Alexa skills different from the set we use for the empirical study. To do this, we randomly selected skills
matching the same criteria we used for the empirical study, but also having a voice interaction model with at least 10
sample utterances after the manual selection. We ran VUI-UPSET without the filtering step, i.e., we only generated
the candidate paraphrases. Then, we computed the similarity score between the seed sentences and the generated
ones. To calculate the similarity score, we used cosine similarity: Given two sentences 𝑠1 and 𝑠2, we first extract two
numerical vectors representing them by using [12], 𝑣1 and 𝑣2; then, we compute the cosine between such vectors using
the formula 𝑣1 ·𝑣2

∥𝑣1 ∥ ∥𝑣2 ∥ . As a result, we obtained a set of pairs of sentences composed of the source seed and the generated
paraphrase, plus the similarity score between them. Two of the authors independently performed a manual analysis on
a sample selected among all the sentences pairs, with 5% margin of error (95% confidence level). The similarity score of
each pair was not shown to the evaluators to avoid any influence. In our evaluation, we analyzed a total of 371 sentence
pairs, indicating “not imperatively equivalent” with 0 and “imperatively equivalent” with 1. After comparing the two
assessments, we discussed the conflicts found to motivate the final choice (0 or 1). In total, the two evaluators disagreed
in 94 paraphrases generated by ADC tool, 884 paraphrases generated by VUI-UPSET and 406 paraphrases generated by
GRSBV and in the end they reached consensus on all of them. As a result of this process, each pair was assigned with a
imperatively equivalent value and a similarity score.

We tested different threshold values, between 0.05 and 0.95 with a step of 0.05. We did not test the extremes because
it would have implied to include (0) or discard (1) all the paraphrases. For each threshold, we computed well-known
metrics in information retrieval, namely precision and recall. Given a candidate threshold 𝑘 , we have a set of retrieved
paraphrases (i.e., paraphrases for which the similarity is higher than 𝑘). The set of correctly retrieved paraphrases is
the subset of retrieved paraphrases for which, in our manual validation, we marked the paraphrases as imperatively
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Table 4. Metrics computed for the similarity threshold evaluation.

𝑘 Precision Recall F0.5 Score Accuracy

0.05 0.24 1.00 0.28 0.24
0.10 0.24 1.00 0.29 0.26
0.15 0.25 1.00 0.29 0.28
0.20 0.27 1.00 0.31 0.34
0.25 0.28 0.97 0.33 0.40
0.30 0.30 0.92 0.34 0.46
0.35 0.32 0.91 0.37 0.52
0.40 0.33 0.86 0.38 0.56
0.45 0.34 0.81 0.38 0.58
0.50 0.38 0.80 0.42 0.64
0.55 0.41 0.73 0.44 0.68
0.60 0.45 0.69 0.48 0.72
0.65 0.45 0.58 0.47 0.73
0.70 0.47 0.48 0.47 0.74
0.75 0.51 0.40 0.49 0.77
0.80 0.55 0.31 0.48 0.78
0.85 0.62 0.18 0.42 0.78
0.90 0.87 0.15 0.44 0.79
0.95 1.00 0.03 0.15 0.77

equivalent to the respective seed. Finally, the set of (imperatively) equivalent paraphrases is the set of all the paraphrases
that we manually marked as imperatively equivalent (regardless of the fact that they were retrieved or not). Given such
sets precision𝑘 is computed as |correctly retrieved paraphrases𝑘 |

|retrieved paraphrasesk | , while recall𝑘 is computed as |correctly retrieved paraphrases𝑘 |
|equivalent paraphrases | .

Additionally, we computed the 𝐹𝛽 score, i.e., the generalization of the more commonly used 𝐹1 score. While the latter
gives equal weight to precision and recall, with the 𝐹𝛽 score it is possible to give more weight to precision (𝛽 < 1) or to
recall (𝛽 > 1). The 𝐹𝛽 score is computed as:

𝐹𝛽,𝑘 = (1 + 𝛽2) · precisionk · precisionk
(𝛽2 · precisionk) + recallk

In our context, we set 𝛽 = 0.5, to give more importance to precision: Given the high number of paraphrases generated by
the first step of VUI-UPSET, we are more interested in discarding non-equivalent paraphrases than in including all the
valid paraphrases. We set 𝑘 as the threshold that allows to achieve the best 𝐹0.5 score.

We report in Table 4 the results of the tuning. The best 𝐹0.5 score can be achieved using as a threshold 𝑘 = 0.75.
With it, we achieve 0.51 precision (i.e., half of the generated paraphrases are imperatively equivalent) and 0.4 recall
(i.e., we discard 60% of the valid generated paraphrases). The identified threshold is in line with the threshold used for
determining the semantic similarity between texts in traceability link recovery [36]. It is worth noting that it would
be possible to select other values of 𝑘 depending on the context in which VUI-UPSET is executed and on how many
false-positives practitioners are willing to manually discard. Based on the results of accuracy report in Table 4 we can
see that as the threshold increases the accuracy also increases. Specifically, increasing the threshold allows us to discard
a greater number of sentences that are not imperatively equivalent.

5.4 Replication Package

We publicly release the implementation of VUI-UPSET, our re-implementation of GRSBV, the command prompt used to
interact with ChatGPT via API and the data used for answering RQ1, RQ2, and RQ3 in our replication package [24].
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Table 5. Comparison among VUI-UPSET and GRSBV in terms of imperatively equivalent of generated paraphrases. ◦ indicates that
the column refers to the evaluated sample, while ★ indicates that it refers to the estimated value of the whole population (95%
confidence level). We report in boldface the significantly best results, while we mark with a * the cases in which the best result is
shared by both of the approaches.

RQ1: Imperative Equivalence of the Generated Paraphrases

VUI-UPSET GRSBV ChatGPT
Skill #generated◦ #equiv◦ %equiv #equiv★ #generated◦ #equiv◦ %equiv #equiv★ #generated◦ #equiv◦ %equiv #equiv★

llama facts 32 32 100.00% * 34 ± 1 14 9 64.29% 10 ± 1 61 26 42.62% * 30 ± 4
Happy birthday 136 47 34.55% 73 ± 11 79 21 26.58% 27 ± 5 48 23 47.92% 26 ± 3
City guide 22 17 77.27% 18 ± 1 51 7 13.72% 9 ± 2 57 26 45.61% 31 ± 3
Quiz game 158 64 40.50% 109 ± 13 54 32 59.26% 39 ± 3 43 26 60.47% 29 ± 2
Scheduling 81 54 66.66% 68 ± 5 129 46 35.66% 69 ± 10 69 53 76.81% 65 ± 4
Name the show 117 84 71.79% 120 ± 8 133 28 21.05% 43 ± 10 104 52 50.00% 72 ± 7
Berry bash 256 97 37.89% 291 ± 38 188 36 19.14% 71 ± 19 126 99 78.57% 148 ± 9
History facts 13 12 92.31% 12 ± 0 12 2 16.66% 2 ± 0 31 27 87.10% 30 ± 2
Particle cloud 194 53 27.32% * 107 ± 20 168 27 16.07% 48 ± 15 96 79 82.29% *105 ± 6
Greeting sender 175 32 18.28% * 58 ± 16 192 14 7.29% 30 ± 16 110 40 36.36% * 56 ± 8
Button trivia 222 103 46.39% * 243 ± 26 188 44 23.40% 87 ± 19 114 51 44.74% 74 ± 8
Video app 35 23 65.71% 26 ± 2 87 17 19.54% 22 ± 5 64 29 45.31% * 35 ± 4
Salesforce 291 134 46.05% 554 ± 60 79 15 18.99% 19 ± 4 64 40 62.50% 49 ± 4
Store Amazon pay 289 61 21.11% 247 ± 58 228 29 12.72% 71 ± 28 146 90 61.64% 145 ± 12
Timers 205 95 46.34% 219 ± 24 198 26 13.13% 53 ± 20 65 36 55.38% 43 ± 4
Pocket 303 86 28.38% 403 ± 71 122 44 36.07% 64 ± 9 80 47 58.75% 59 ± 5
Piano player 132 50 37.87% 76 ± 10 119 10 8.40% 17 ± 7 56 29 51.79% 34 ± 3
Week calendar 299 117 39.13% 525 ± 27 210 61 29.05% 134 ± 23 54 42 77.78% 34 ± 3
Crash notification 65 46 70.77% 55 ± 4 139 37 26.62% 61 ± 12 66 40 60.61% 48 ± 4
Memory 119 64 53.78% 92 ± 9 61 26 42.62% 32 ± 4 30 15 50.00% 17 ± 2
Radio 37 18 48.65% 20 ± 2 150 21 14.00% 34 ± 12 80 41 51.25% 52 ± 5
Trading teacher 65 47 72.31% 56 ± 4 73 22 30.14% 27 ± 5 136 77 56.62% 120 ± 11
College finder 362 138 38.12% 2331 ± 306 285 65 22.81% 229 ± 50 230 99 43.04% 248 ± 29
Feed reader 355 108 30.42% 1428 ± 235 290 30 10.34% 122 ± 59 197 76 38.58% 155 ± 20
Premium fact 32 23 71.88% 25 ± 2 33 5 15.15% 6 ± 1 92 51 55.43% 67 ± 6
Humour me 277 185 66.79% 664 ± 50 121 24 19.83% 35 ± 9 75 26 34.67% 32 ± 5
Multistream audio 263 40 15.21% 127 ± 42 109 17 15.60% 24 ± 7 40 20 50.00% 23 ± 2
Premium hello word 177 70 39.55% * 130 ± 16 174 32 18.39% 58 ± 16 129 79 61.24% *118 ± 10
Voice developer 349 106 30.37% 1162 ± 191 265 58 21.89% 186 ± 42 182 121 66.48% 230 ± 17
Tasty beverage 46 20 43.48% 23 ± 3 159 28 17.61% * 48 ± 14 89 47 52.81% * 61 ± 6
Weather wear 259 219 84.56% 669 ± 40 146 49 33.56% 79 ± 12 83 57 68.67% 73 ± 5
Next prayer 42 21 50.00% * 24 ± 2 32 4 12.50% 5 ± 1 28 21 75.00% * 23 ± 2
Math facts 40 32 80.00% 35 ± 5 44 14 31.82% 16 ± 2 33 20 60.61% 22 ± 2
Forget me not 69 25 36.23% 30 ± 4 48 19 39.58% 22 ± 3 33 36 91.67% 37 ± 2
Charity roster 112 81 72.32% 115 ± 8 52 18 34.62% 21 ± 3 74 52 70.27% 64 ± 5
Cyclist assistant 111 91 81.98% 127 ± 8 90 28 31.11% 36 ± 6 44 39 88.64% 44 ± 3
Internet archive 156 66 42.31% 111 ± 13 133 30 22.56% 46 ± 10 84 62 73.81% 78 ± 5
My barkeeper 373 178 47.72% 5910 ± 619 287 106 36.93% 416 ± 56 252 165 65.48% 111 ± 54
Girls volleyball 14 10 71.43% 11 ± 1 117 6 5.13% 12 ± 16 67 51 76.12% 62 ± 4
Boys basketball 6 3 50.00% 3 ± 2 64 5 7.81% 7 ± 2 40 32 80.00% 35 ± 2
Overall 6289 2752 44.7% 16331 ± 1957 5123 1112 21.1% 2337 ± 538 3475 2039 58.7% 2785 ± 292

6 EMPIRICAL STUDY RESULTS

This section reports the analysis of the results for the three research questions of our study.

6.1 RQ1: Paraphrase Equivalence

The results of the analysis conducted for RQ1 are described in Table 5. It is worth noting that since VUI-UPSET generates
a higher number of paraphrases, the size of the evaluated sample is naturally larger because of the methodology we
used to select it. The first clear result we obtained is that VUI-UPSET generates a higher percentage of imperatively
equivalent paraphrases (44.7%) compared to GRSBV (21.1%), while ChatGPT (58.7%) generates the highest percentage
of imperatively equivalent paraphrases. When using statistical hypothesis tests, we observe a significant difference
between VUI-UPSET and GRSBV: In this case, the p-value is lower than 0.001 with a large effect size (𝛿 = 0.77). The
boxplots in Fig. 4 visually confirm the difference. Despite the greater number of imperatively equivalent paraphrases
generated there are some very common paraphrases that GRSBV is unable to reproduce. For example, they do not
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Fig. 4. Distribution of percentages (left) and absolute numbers (right) of imperatively equivalent paraphrases over the 40 skills
analyzed.

generate paraphrases with personal pronoun variations (e.g., “give me a space fact” → “give her a space fact” ). Given
the higher number of generated paraphrases and the acceptable percentage of imperatively equivalent paraphrases,
VUI-UPSET achieves the best results for most of the skills (36 out of 40, 4 of which non-significantly different from the
results achieved by GRSBV). It is important to note that the number of the seed sentences can affect the performance of
VUI-UPSET in terms of percentage of imperatively equivalent generated paraphrases.

When comparing VUI-UPSET and ChatGPT by analyzing the percentage of imperatively equivalent paraphrases
generated we obtain an adjusted p-value of 0.032, with a small effect size (𝛿 = -0.28). The absolute number of paraphrases
generated by VUI-UPSET is 6,289, while ChatGPT generates 3,475 paraphrases, of which we obtain 2,752 and 2,039
imperatively equivalent paraphrases, respectively. We observed that ChatGPT behaves in a very different way compared
to the other approaches. It often modifies the sentence structure from direct commands to more complex sentences,
while the others keep (by design) the sentence structure unaltered. For example, from the seed sentence “don’t want
humour me” we obtain “Being funny with me is not something I want.” In addition, based on the manual validation of
the sample of ChatGPT generated paraphrases, we observed that all paraphrases are grammatically correct and relevant
to the original sentence, differently from the other approaches. However, when transforming a direct command into a
more discursive adding a specific detail, imperatively equivalence is often lost, as observed in the results. For example
based on the seed sentence “tell me a fact” (used to ask a fact) we obtain “Do you have any fascinating facts to share?”.

Another important point to highlight concerns the number of paraphrases generated by ChatGPT. The number of
generated paraphrases is a result of the initial prompt, in which we intentionally refrained from specifying a fixed
number of expected paraphrases. Instead, our prompt aimed to generate all paraphrases equivalent to the initial seed
according to ChatGPT itself. With careful engineering of the prompt and more refined post-processing of the generated
paraphrases, it is plausible to assume that ChatGPTwould be able to generate a higher number of imperatively equivalent
paraphrases. However, deciding how to engineer the prompt involves the evaluation of a trade-off, as over-extension
may introduce non-equivalent paraphrases. Consequently, we consider this as part of our future work.

Answer to RQ1. VUI-UPSET achieves better results than GRSBV. ChatGPT achieves a higher percentage of
imperatively equivalent paraphrases compared to VUI-UPSET, but VUI-UPSET generates a higher absolute number
of imperatively equivalent paraphrases than one ChatGPT invocation.

6.2 RQ2: Paraphrase Capability of Finding Bugs

We report the results of the analysis conducted for RQ2 in Table 6. VUI-UPSET generates the highest absolute number of
bug-revealing paraphrases compared to the two baselines for 15 skills out of 40. GRSBV, generates the highest number
of bug-revealing paraphrases for 3 skills out of 40. Finally, ChatGPT obtains the best results for 13 skills out of 40. It
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Fig. 5. Distribution of percentages (left) and absolute numbers (right) of bug-revealing paraphrases over the 40 skills analyzed.

Table 6. Comparison among VUI-UPSET and GRSBV in terms their bug-revealing capability. ◦ indicates that the column refers to the
evaluated sample, while★ indicates that it refers to the estimated value on the whole population (95% confidence level). We report in
boldface the significantly best results, while we mark with a * the cases in which the best result is shared by two approaches.

RQ2: Paraphrase Capability of Finding Bugs

VUI-UPSET GRSBV ChatGPT
Skill #equiv◦ #bugs◦ %bugs #bugs★ #equiv◦ #bugs◦ %bugs #bugs★ #equiv◦ # bugs◦ %bugs #bugs★

llama facts 32 21 65.63% 23 ± 2 9 6 66.67% 7 ± 1 26 23 88.46% 29 ± 2
Happy birthday 47 13 27.66% 23 ± 4 21 3 14.29% 5 ± 2 23 2 8.70% 3 ± 1
City guide 17 0 0.00% 0 ± 0 7 1 14.28% 2 ± 1 26 18 69.23% 24 ± 2
Quiz game 64 0 0.00% 3 ± 3 32 0 0.00% 1 ± 1 26 0 0.00% 1 ± 1
Scheduling 54 5 9.26% 8 ± 3 46 4 8.70% 7 ± 3 53 4 7.55% 6 ± 2
Name the show 84 37 44.08% 56 ± 6 28 10 35.71% 19 ± 3 52 26 50.00% 39 ± 4
Berry bash 97 0 0.00% 8 ± 8 36 3 8.33% 7 ± 4 99 16 16.16% 25 ± 8
History facts 12 1 8.33% 1 ± 0 2 0 0.00% 0 ± 0 27 11 40.74% 13 ± 2
Particle cloud 53 3 5.66% 8 ± 5 27 2 7.41% 5 ± 3 79 6 7.59% 10 ± 4
Greeting sender 32 5 15.63% 12 ± 4 14 6 42.86% 20 ± 2 40 8 20.00% 13 ± 3
Button trivia 103 14 13.59% * 37 ± 13 44 0 0.00% 3 ± 3 51 17 33.33% * 27 ± 4
Video app 23 1 4.35% 2 ± 1 17 13 76.47% 21 ± 1 29 0 0.00% 1 ± 1
Salesforce 134 50 37.31% 229 ± 31 15 6 40.00% 9 ± 1 40 3 7.50% 5 ± 2
Store Amazon pay 61 25 40.98% 125 ± 15 29 0 0.00% 2 ± 2 90 33 36.67% 57 ± 8
Timers 95 35 36.84% 89 ± 12 26 0 0.00% 2 ± 2 36 2 5.56% 3 ± 1
Pocket 86 1 1.16% 15 ± 14 44 0 0.00% 2 ± 2 47 0 0.00% 1 ± 1
Piano player 50 0 0.00% 2 ± 2 10 0 0.00% 1 ± 1 29 2 6.90% 3 ± 1
Week calendar 117 0 0.00% 15 ± 15 61 0 0.00% 4 ± 4 42 0 0.00% 1 ± 1
Crash notification 46 21 45.65% 27 ± 3 37 15 40.54% * 30 ± 4 40 26 65.00% * 34 ± 3
Memory 64 39 60.94% 61 ± 5 26 6 23.07% 8 ± 2 15 8 53.33% 10 ± 1
Radio 18 1 5.56% 2 ± 1 12 1 4.76% 3 ± 2 41 27 65.85% 37 ± 3
Trading teacher 47 7 14.89% 9 ± 2 22 7 31.82% 10 ± 2 77 37 48.05% 63 ± 7
College finder 138 51 36.96% 975 ± 132 65 20 30.77% 86 ± 14 99 38 38.38% 106 ± 14
Feed reader 108 18 16.67% 277 ± 83 30 7 23.33% 42 ± 9 76 11 14.47% 25 ± 9
Premium fact 23 3 13.04% 4 ± 1 5 1 20.00% 1 ± 0 51 24 47.06% 34 ± 4
Humour me 185 5 2.70% 30 ± 25 24 1 4.17% 3 ± 2 32 26 3.85% 2 ± 1
Multistream audio 40 7 17.50% 30 ± 8 14 2 11.76% 4 ± 2 20 0 0.00% 1 ± 1
Premium hello word 70 6 8.57% 13 ± 7 24 6 18.75% 14 ± 4 79 56 70.89% 91 ± 6
Voice developer 106 30 28.30% 383 ± 68 58 19 32.76% 75 ± 11 121 12 9.92% 25 ± 12
Tasty beverage 20 2 10.00% 3 ± 1 24 12 42.86% * 26 ± 3 47 19 40.43% * 27 ± 3
Weather wear 219 18 8.22% 58 ± 35 49 9 18.37% 17 ± 5 57 9 15.79% 13 ± 4
Next prayer 21 0 0.00% 1 ± 1 4 2 50.00% 3 ± 0 21 5 23.81% 6 ± 1
Math facts 32 7 21.88% 9 ± 2 14 6 42.86% 8 ± 1 20 7 35.00% 8 ± 1
Forget me not 25 3 12.00% 4 ± 1 19 0 0.00% 1 ± 1 33 0 0.00% 1 ± 1
Charity roster 81 1 1.23% 4 ± 3 18 0 0.00% 1 ± 1 52 21 40.38% 28 ± 3
Cyclist assistant 91 0 0.00% 3 ± 3 28 0 0.00% 1 ± 1 39 7 17.95% 9 ± 2
Internet archive 66 26 39.39% 49 ± 6 25 14 46.67% 26 ± 3 62 14 22.58% 19 ± 4
My barkeeper 178 71 39.89% 2604 ± 326 200 25 23.58% 111 ± 24 165 30 18.18% 22 ± 8
Girls volleyball 3 0 0.00% 0 ± 0 6 0 0.00% 0 ± 0 51 21 41.18% 27 ± 3
Boys basketball 3 0 0.00% 0 ± 0 5 0 0.00% 0 ± 0 32 15 46.88% 18 ± 2
Overall 2752 527 19.2% 5202 ± 851 1112 207 18.6% 587 ± 127 2039 559 27.4% 867 ± 141

is worth noting, however, that ChatGPT is significantly better than VUI-UPSET for two additional skills (i.e., Crash
notification and Tasty beverage), for which it is not the best approach overall (it is not better than GRSBV). Thus, in this
regard, the two approaches achieve comparable results. If we sum the results obtained over the 40 skills, we find that
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VUI-UPSET generates (over the whole population) between 4,351 and 6,053 bug-revealing paraphrases, GRSBV between
460 and 714, and ChatGPT between 726 and 1,008. This shows that the absolute number of bug-revealing paraphrases
generated by VUI-UPSET at least four times higher than the number of bug-revealing paraphrases generated by the
best baseline (ChatGPT).

VUI-UPSET and GRSBV achieve similar results in terms of percentage of bugs found (overall, 19.2% and 18.6%,
respectively), while ChatGPT achieves much better results (overall, 27.4%). However, when running statistical hypothesis
tests, we can not reject any null hypothesis (as also confirmed by the boxplots in Fig. 5). Indeed, in this case, the 𝑝-values
obtained is higher than 0.05 (never lower than 0.55) when comparing VUI-UPSET with GRSBV and it is 0.06 when
comparing VUI-UPSET with ChatGPT. Similarly, the effect size is negligible in the comparison with GRSBV, while in the
comparison with ChatGPT it is small (𝛿 = -0.27). Therefore, a first conclusion is that none of the compared approaches
inherently generates better paraphrases for identifying bugs, even if ChatGPT generally achieves slightly better results.
Thus, intuitively, the larger the absolute number of generated paraphrases, the better (i.e., the higher the number of
generated bug-revealing paraphrases).

There are skills for which VUI-UPSET works particularly well. For example, it generates 125 ± 15 bug-revealing
paraphrases for the skill Store Amazon pay, which is remarkable if we compare it to the GRSBV where we obtain 2 ± 2.
ChatGPT, instead, works reasonably well for the same skill, even if with worse results (57 ± 8 bug-revealing paraphrases).
At the same time, we can observe that, for some skills (e.g., Quiz game, Piano player, and Week calendar), we could not
find any bug-revealing paraphrases generated by the any approach, despite the high number of imperatively equivalent
paraphrases generated (e.g., VUI-UPSET generated 76 ± 10 imperatively equivalent paraphrases). As for VUI-UPSET
and GRSBV, this probably happens because the synonyms selected, regardless of their number, are clearly similar to
the words used in the original seeds. For example, in the “Piano player” skill, the word “scale” has “musical scale” as a
valid synonym, and the word “lesson” is often replaced with “object lesson”. Every time such substitutions happen,
Alexa is still able to compensate for such small variations. Remarkably, this happens also for ChatGPT which works
in a completely different way. In this case, we can observe that ChatGPT does not always act only on synonyms
but generates paraphrases with minor changes from the seed. For example, in the skill Week calendar the generated
paraphrases retain the main words of the seed that trigger the appropriate intent by negligible changes in the sentence
structure (e.g.,, it adds ’please’ to the end of the sentence or transforms the direct command into a question). Again, we
can see that Alexa is able to handle such small variations.

An example of bug found through VUI-UPSET is the following. For the Particle cloud skill, given the seed sentence
“register my date of birth,” VUI-UPSET generates, among the other paraphrases, “register our date of birth.” Such a
paraphrase is imperatively equivalent to the seed sentence but, when tested in the Alexa Developer Console, it does not
allow to obtain the same result (i.e., the test case fails).

In summary, while VUI-UPSET achieves better results in terms of absolute number of bug-revealing paraphrases
generated, it is worth highlighting that ChatGPT is able to generate a higher percentage of bug-revealing paraphrases,
thus making the execution of such tests more cost-effective than the execution of the tests generated with VUI-UPSET.
Also, ChatGPT could be further improved in several ways (e.g., through prompt engineering or by asking to generate a
larger set of paraphrases): We relied on a simple version of the ChatGPT baseline which deserves more fine-tuning and
investigation in the future. Indeed, it showed to be competitive (and potentially better) than a technique specifically
designed for this task, namely VUI-UPSET. We discuss more the strengths and weaknesses of the two approaches in
Section 6.4.
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Answer to RQ2.ChatGPT generates a higher percentage of bug-revealing paraphrases than VUI-UPSET and GRSBV,
while VUI-UPSET generates the highest total absolute number of such paraphrases. The two approaches generate a
significantly higher number of paraphrases than the other for different skills, showing a strong complementarity.

6.3 RQ3: Bug Reduction

We report the results of the analyses conducted for answering RQ3 in Table 7. In detail, we can observe the results of
the three evaluations conducted regarding the inclusion in the vocal interaction model of the skill of (i) imperatively
equivalent paraphrases that resulted in bugs in RQ2, (ii) all imperatively equivalent paraphrases, and (iii) by performing
a four-fold cross validation. For all the evaluations, we first verified that the inclusion of new paraphrases within the
skill did not alter the initial behavior. We observed that in all the scenarios never alters the correct functioning of
the original utterances included in the skill (i.e., 0 failed original utterances). We report below the results of the three
evaluation separately. Note that the results obtained by the two approaches for this evaluation should not be used to
compare them since the test sets are different.

Including only bug-revealing paraphrases. In the first evaluation, despite the inclusion of bug-revealing para-
phrases in the voice interaction models, we can bring the number of failed tests to 0 for 33 out of 40 skills. We can still
find failing test cases in 7 skills when using VUI-UPSET. The “Button trivia” and “Voice developer” skills have a higher
percentage of failing tests (32.0% and 32.1%, respectively) compared to the base skill (13.6% and 28.3%, respectively, as
shown in the results of RQ2), while the opposite is true for all the other skills. An example of failing test is the paraphrase
“let’s initiate the gamey” (generated for the seed “let’s start the game”). While the correct intent is activated when
using the original set of utterances defined by the developers, after editing the voice interaction model by inserting our
bug-revealing paraphrases, the expected intent is no longer activated. We obtain a similar result when using ChatGPT.
In this case, we can bring the number of failed tests to 0 for 30 skills out of 40, while we can still find failing test cases
in 10 skills. The “Particle Cloud” and “Premium Hello Word” skills have a higher percentage of failing tests (17.7% and
13.2%, respectively) compared to the other skill. For “Premium Hello Word”, we found a significantly lower percentage
of bugs compared to the original skill (13.2% instead of 70.89%).

For both the approaches, we can observe, in general, that most of the skills that have a high percentage of bugs in
their original version tend now to have an extremely low percentage of bugs when augmented with bug-revealing
paraphrases. For example, for the skill “Crash notification”, 21 paraphrases generated by VUI-UPSET failed when using
the original skill (40.54%), while the improved version we observed only one failure. This happens for the paraphrase
“missing replay,” which is supposed to activate the intent TimeoutIntent, but it activates the intent InvalidResponseIntent,
probably because it is very similar to the utterance “missing time-out response” that activates such an intent in the VIM.
For the skill “Trading teacher” the only bug is encountered with the phrase “I want a return”. In this case, the activation
intent fails and no response is output because the skill does not understand the request and is unable to associate it
with any intent (not even a similar intent). After conducting a thorough analysis of failed inputs across all skills, we
have noticed that including certain paraphrases in a skill can lead to ambiguity in activating the intended action. Based
on this observation, we conclude that defining similar intents within the same skill can pose problems. Therefore, when
creating a skill, developers should clearly and explicitly define the various functionalities that the skill is capable of
offering and the scope of each of them, by precisely delimiting the boundaries.

Including all the imperatively equivalent paraphrases. When including all the imperatively equivalent ut-
terances in the voice interaction models of the skills (central part of Table 7), we observed that almost all the tests
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Table 7. Results of RQ3 for the two analyses conducted (absolute number of failing tests, percentage of failing tests, and estimated
absolute number of failing tests on the whole population). We only report the results of the tests augmented with the generated
paraphrases since the tests conducted with the seed utterances always pass.

RQ3: Skill Improvement

Including bug-revealing paraphrases Including all the equivalent paraphrases

VUI-UPSET ChatGPT VUI-UPSET ChatGPT
Skill Abs. Rel. Est. Abs. Rel. Est. Abs. Rel. Est. Abs. Rel. Est.

llama f. 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1
Happy b. 0 0.00% 2 ± 2 0 0.00% 1 ± 1 0 0.00% 2 ± 2 0 0.00% 1 ± 1
City g. 0 0.00% 0 ± 0 0 0.00% 1 ± 1 0 0.00% 0 ± 0 0 0.00% 1 ± 1
Quiz g. 0 0.00% 3 ± 3 0 0.00% 1 ± 1 0 0.00% 3 ± 3 0 0.00% 1 ± 1
Sched. 0 0.00% 2 ± 2 0 0.00% 2 ± 2 0 0.00% 2 ± 2 0 0.00% 2 ± 2
Name the s. 0 0.00% 3 ± 3 0 0.00% 2 ± 2 0 0.00% 3 ± 3 0 0.00% 4 ± 4
Berry b. 0 0.00% 8 ± 8 0 0.00% 4 ± 4 0 0.00% 8 ± 8 0 0.00% 1 ± 1
History f. 0 0.00% 0 ± 0 0 0.00% 1 ± 1 0 0.00% 0 ± 0 0 0.00% 3 ± 3
Particle c. 0 0.00% 3 ± 3 17 17.71% 21 ± 4 0 0.00% 3 ± 3 0 0.00% 2 ± 2
Greet. s. 2 6.25% 5 ± 3 4 3.64% 5 ± 1 0 0.00% 2 ± 2 0 0.00% 2 ± 2
Button t. 33 32.04% 86 ± 13 4 3.51% 5 ± 1 0 0.00% 7 ± 7 0 0.00% 1 ± 1
Video app 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1
Salesf. 0 0.00% 15 ± 15 4 6.25% 5 ± 1 0 0.00% 15 ± 15 0 0.00% 4 ± 4
St. Amaz. p. 0 0.00% 8 ± 8 0 0.00% 4 ± 4 0 0.00% 8 ± 8 0 0.00% 1 ± 1
Timers 0 0.00% 6 ± 6 0 0.00% 1 ± 1 0 0.00% 6 ± 6 0 0.00% 1 ± 1
Pocket 0 0.00% 12 ± 12 0 0.00% 2 ± 2 0 0.00% 12 ± 12 0 0.00% 2 ± 2
Piano p. 0 0.00% 2 ± 2 0 0.00% 1 ± 1 0 0.00% 2 ± 2 0 0.00% 1 ± 1
Week c. 0 0.00% 15 ± 15 0 0.00% 1 ± 1 0 0.00% 15 ± 15 0 0.00% 1 ± 1
Crash n. 1 2.17% 3 ± 2 1 1.52% 2 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1
Memory 0 0.00% 3 ± 3 0 0.00% 0 ± 0 0 0.00% 3 ± 3 0 0.00% 0 ± 0
Radio 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1
Trading t. 1 2.13% 3 ± 2 1 0.74% 4 ± 3 0 0.00% 2 ± 2 0 0.00% 3 ± 3
College f. 0 0.00% 66 ± 66 2 0.87% 9 ± 7 0 0.00% 66 ± 66 2 0.87% 9 ± 7
Feed read. 0 0.00% 42 ± 42 0 0.00% 4 ± 4 0 0.00% 42 ± 42 0 0.00% 4 ± 4
Prem. fact 0 0.00% 1 ± 1 0 0.00% 2 ± 2 0 0.00% 1 ± 1 0 0.00% 2 ± 2
Humour me 0 0.00% 18 ± 18 1 1.33% 2 ± 1 0 0.00% 18 ± 18 1 1.33% 2 ± 1
M. audio 0 0.00% 4 ± 4 0 0.00% 1 ± 1 0 0.00% 4 ± 4 0 0.00% 1 ± 1
P. Hello w. 4 5.71% 10 ± 6 17 13.18% 20 ± 3 0 0.00% 4 ± 4 0 0.00% 3 ± 3
Voice dev. 34 32.08% 434 ± 68 12 6.59% 20 ± 8 0 0.00% 34 ± 34 12 6.59% 20 ± 8
Tasty bev. 0 0.00% 1 ± 1 0 0.00% 2 ± 2 0 0.00% 1 ± 1 0 0.00% 2 ± 2
Weath. wear 0 0.00% 18 ± 18 0 0.00% 2 ± 2 0 0.00% 18 ± 18 0 0.00% 2 ± 2
Next pray. 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1
Math facts 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1
Forg. me not 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1 0 0.00% 1 ± 1
Charity r. 0 0.00% 3 ± 3 0 0.00% 2 ± 2 0 0.00% 3 ± 3 0 0.00% 2 ± 2
Cyc. as. 0 0.00% 3 ± 3 0 0.00% 1 ± 1 0 0.00% 3 ± 3 0 0.00% 1 ± 1
Internet a. 0 0.00% 3 ± 3 0 0.00% 2 ± 2 0 0.00% 3 ± 3 0 0.00% 2 ± 2
My bark. 2 1.12% 201 ± 199 0 0.00% 1 ± 1 1 0.56% 182 ± 181 0 0.00% 1 ± 1
Girls voll. 0 0.00% 0 ± 0 0 0.00% 2 ± 2 0 0.00% 0 ± 0 0 0.00% 2 ± 2
Boys bask. 0 0.00% 0 ± 0 0 0.00% 1 ± 1 0 0.00% 0 ± 0

Overall 77 2.80% 989 ± 540 63 1.80% 140 ± 77 1 0.04% 479 ± 478 15 4.30% 92 ± 77

generated with VUI-UPSET pass, except for one in the “My barkeeper” skill. In this case, the paraphrase “please add
to favourite” is supposed to activate the intent “AddToFavoritesIntent“, while it activates the “IngredientIntent”. The
analysis of the voice interaction model shows that the two intents are very similar, so the addition of this paraphrase
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creates ambiguity in the activation of the correct intent. In detail, in the “IngredientIntent” it creates ambiguity with
seed “please add to list ingredient”. Also, considering the example given in RQ2, we can observe that there are no more
failing tests in the skill “button trivia” in this second evaluation. As for ChatGPT, surprisingly, we observe that some
tests still fail for three skills. The one for which this is more evident is Voice developer, for which including all the
imperatively equivalent paraphrases does not provide any benefit in terms of additional tests passed compared to the
previous analysis.This occurs because the paraphrases generated in this context by ChatGPT are ambiguous for the
intents in the skill. Specifically different intents have similar seeds and this creates problems in the activation request.
Ambiguity problems occur when similar paraphrases are added in different intents, and this may cause the intent to be
activated incorrectly. However, this issue might affect the skill from its design: If the activation phrases for the intents
identified by the developer are very similar to each other, users might have a hard time at selecting one or the other
when they do not use the exact sentence meant by the developers. Having similar paraphrases for two different seed
sentences should raise a warning for developers, who might use this information to more clearly delimit the scope of
the ambiguous sentences.

For example, the paraphrase “Switch to a dissimilar vocal sound” should activate the PollyVoiceIntent from the seed
“use a different voice”. What happens instead is that: it activates the SSMLIntent where we have different seeds that can
create ambiguity for example “play a sound effect”. We conjecture that this is due to the fact that ChatGPT tends to
change more deeply the structure of the paraphrases: Some of the imperatively equivalent paraphrases might be very
similar to others or even imperatively equivalent to them, thus the confusion. For example from the seed “what are the
latest updates” ChatGPT generates “Please share the newest updates with me” which is very similar to the seed “share
the results” present in another intent in the same skill.

Four-fold cross validation. We conducted four evaluations for each skill by grouping the entire collection of
imperatively equivalent paraphrases into four folds. Then, we used three of these folds (constituting 75% of the instances)
to improve the voice interaction model of the skill. The remaining folds (25%) was used to evaluate the performance
of the newly updated version of the skill. We report the results of each iteration of the four-fold cross validation in
Table 8. In detail, the table features columns corresponding to each assessed fold, considering both the VUI-UPSET and
ChatGPT. Beyond the individual evaluations for each fold, we also provide a comprehensive summary of the four-fold
cross-validation, which is derived from aggregating the results obtained across the four individual evaluations. We
can observe that when we do not include the same paraphrases both in the VIM and in the test set, most of the skills
still improve in terms of absolute number and percentage of observed bugs. As for VUI-UPSET, we observed that 25
out of 40 skills have a lower percentage of bugs compared to the original skills, 11 do not change (for most of them
we did not find any bug in both the cases) while only 4 out of 40 have a higher percentage of bugs. The improvement
is particularly high for some skills. For example, Ilama facts improves by ∼65 percentage points (we found no bugs
when using the improved versions). We also have remarkably good results for College finder, for which we reduce the
percentage of failed tests by ∼17 percentage points but, most importantly, we estimate that the improved version has a
reduced absolute number of bugs on the whole population of generated paraphrases between 195 and 723 bugs. On the
other hand, one of the skills (Charity roster) achieves remarkably worse results (percentage of failing tests increased
by ∼42 percentage points). This happens because the inclusion of specific paraphrases within the voice interaction
model (which differs from those tested) creates ambiguity in the activation of the expected intent. For example, the
paraphrase “i want to discover more about this charity” whose seed is “I want to learn more about this charity” expects
the activation of the intent LearnMoreIntent. However it activates the intent DonateIntent where we have the sentence
“I want info to contribute to this charity”. Therefore we assume it is a skill construction problem. We obtain a very
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Table 8. Results of RQ3 for the analyses conducted estimated absolute number of failing tests on single iteration in 4-fold cross
validation.

RQ3: Skill Improvement Four-fold cross validation

VUI-UPSET ChatGPT

Fold 1 Fold 2 Fold 3 Fold 4 Overall Fold 1 Fold 2 Fold 3 Fold 4 Overall
Skill Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Est. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Est.

llama facts 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1 0 0,00% 0 0,00% 1 3,85% 0 0,00% 1 3,85% 2 ± 1
Happy birthday 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 2 ± 2 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1
City guide 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 ± 0 0 0,00% 1 3,85% 1 3,85% 1 3,85% 3 11,54% 4 ± 1
Quiz game 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 3 ± 3 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1
Scheduling 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 2 ± 2 0 0,00% 1 1,89% 0 0,00% 0 0,00% 1 1,89% 3 ± 2
Name the show 2 2,38% 0 0,00% 0 0,00% 1 1,19% 3 3,57% 7 ± 4 3 5,77% 5 9,62% 2 3,85% 0 0,00% 10 19,23% 19 ± 0
Berry bash 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 8 ± 8 1 1,01% 1 1,01% 0 0,00% 0 0,00% 2 2,02% 7 ± 5
History facts 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 ± 0 0 0,00% 1 3,70% 0 0,00% 0 0,00% 1 3,70% 2 ± 1
Patricle cloud 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 3 ± 3 1 1,27% 1 1,27% 2 2,53% 0 0,00% 4 5,06% 8 ± 4
Greeting sender 1 3,13% 1 3,13% 0 0,00% 0 0,00% 2 6,25% 5 ± 3 1 2,50% 0 0,00% 0 0,00% 0 0,00% 1 2,50% 3 ± 2
Button trivia 8 7,77% 6 5,83% 0 0,00% 0 0,00% 14 13,59% 37 ± 13 0 0,00% 3 5,88% 2 3,92% 0 0,00% 5 9,80% 13 ± 0
Video app 0 0,00% 1 4,35% 0 0,00% 0 0,00% 1 4,35% 2 ± 1 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1
Salesforce 2 1,49% 0 0,00% 0 0,00% 0 0,00% 2 1,49% 21 ± 19 2 5,00% 1 2,50% 2 5,00% 0 0,00% 5 12,50% 28 ± 18
Store Amazon pay 2 3,28% 0 0,00% 1 1,64% 1 1,64% 4 6,56% 20 ± 15 1 1,11% 1 1,11% 0 0,00% 2 2,22% 4 4,44% 9 ± 5
Timers 2 2,11% 0 0,00% 0 0,00% 0 0,00% 2 2,11% 10 ± 8 0 0,00% 4 11,11% 1 2,78% 1 2,78% 6 16,67% 19 ± 9
Pocket 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 12 ± 12 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 2 ± 2
Piano player 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 2 ± 2 0 0,00% 1 3,45% 0 0,00% 0 0,00% 1 3,45% 2 ± 1
Week calendar 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 15 ± 15 0 0,00% 0 0,00% 0 0,00% 1 2,38% 1 2,38% 2 ± 1
Crash notification 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1 0 0,00% 0 0,00% 1 2,50% 3 7,50% 4 10,00% 6 ± 2
Memory 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 3 ± 3 0 0,00% 2 13,33% 1 6,67% 0 0,00% 3 20,00% 10 ± 5
Radio 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1 4 9,76% 0 0,00% 2 4,88% 1 2,44% 7 17,07% 10 ± 3
Trading 2 4,26% 0 0,00% 0 0,00% 0 0,00% 2 4,26% 4 ± 2 7 9,09% 6 7,79% 0 0,00% 7 9,09% 20 25,97% 30 ± 10
Collage 5 3,62% 12 8,70% 4 2,90% 6 4,35% 27 19,57% 516 ± 132 6 6,06% 9 9,09% 12 12,12% 11 11,11% 38 38,38% 500 ± 380
Feed-reader 13 12,04% 1 0,93% 0 0,00% 0 0,00% 14 12,96% 215 ± 83 0 0,00% 0 0,00% 4 5,26% 2 2,63% 6 7,89% 35 ± 13
Premium fact 0 0,00% 0 0,00% 2 8,70% 2 8,70% 4 17,39% 5 ± 1 2 3,92% 0 0,00% 1 1,96% 1 1,96% 4 7,84% 7 ± 3
Humor me 1 0,54% 0 0,00% 0 0,00% 0 0,00% 1 0,54% 20 ± 19 0 0,00% 0 0,00% 2 7,69% 0 0,00% 2 7,69% 12 ± 7
Multistream audio 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 4 ± 4 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1
Premium hello world 4 5,71% 1 1,43% 2 2,86% 1 1,43% 8 11,43% 17 ± 7 4 5,06% 9 11,39% 3 3,80% 6 7,59% 22 27,85% 38 ± 4
Voice developer 8 7,55% 13 12,26% 6 5,66% 10 9,43% 37 34,91% 472 ± 68 1 0,83% 2 1,65% 7 5,79% 2 1,65% 12 9,92% 52 ± 15
Tasty beverage 0 0,00% 0 0,00% 1 5,00% 0 0,00% 1 5,00% 2 ± 1 4 8,51% 3 6,38% 0 0,00% 4 8,51% 11 23,40% 15 ± 4
Weather wear 4 1,83% 0 0,00% 0 0,00% 0 0,00% 4 1,83% 26 ± 22 1 1,75% 3 5,26% 0 0,00% 1 1,75% 5 8,77% 19 ± 8
Next prayer 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1
Math facts 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1
Forget me not 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 1 ± 1
Charity roster 5 6,17% 15 18,52% 9 11,11% 6 7,41% 35 43,21% 53 ± 6 5 9,62% 0 0,00% 2 3,85% 1 1,92% 8 15,38% 13 ± 1
Cyclist assistant 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 3 ± 3 1 2,56% 0 0,00% 0 0,00% 0 0,00% 1 2,56% 2 ± 1
Internet archive 0 0,00% 0 0,00% 0 0,00% 4 6,06% 4 6,06% 9 ± 5 0 0,00% 0 0,00% 1 1,61% 0 0,00% 1 1,61% 3 ± 2
My barkeeper 11 6,18% 5 2,81% 12 6,74% 24 13,48% 52 29,21% 1907 ± 326 6 3,64% 7 4,24% 0 0,00% 0 0,00% 13 7,88% 98 ± 90
Girls volleyball 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 ± 0 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 2 ± 2
Boys basketball 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 0,00% 0 ± 0 1 3,13% 0 0,00% 8 25,00% 0 0,00% 9 28,13% 11 ± 2

similar result for ChatGPT: 29 out of 40 skills have a lower percentage of bugs compared to the original skills, 7 do not
change, and only 4 out of 40 have a higher percentage of bugs. Also in this case, we observed big improvements in
some skills: For example, using some of the paraphrases for improving the VIM of the Ilama facts allows to achieve,
also here, an almost bug-free version of the skill (∼-85 percentage points of failing tests, with a single bug found in the
improved version). Differently from what we observed for VUI-UPSET, the four cases in which the percentage of failing
tests increases are milder. Still, for one of the skills (Store Amazon pay) we observed an increased percentage of failing
test quite high (∼11 percentage points).

Answer to RQ3. Adding the paraphrases generated by VUI-UPSET and ChatGPT to the VIMs is always safe (i.e.,
the skill still works with the intended basic utterances). However, adding only bug-revealing paraphrases is not
sufficient for several skills, for which including all the valid paraphrases is preferable. Finally, adding paraphrases
almost always improves the robustness of the skill when faced with utterances never seen before.

6.4 Discussion

Based on the achieved results, we highlight the differences between VUI-UPSET and ChatGPT. In addition, we identify
possible future research directions in this field, and guidelines for practitioners.

6.4.1 Strengths and Weaknesses of VUI-UPSET and ChatGPT. Our results clearly show that, overall, VUI-UPSET and
ChatGPT emerge as the best approaches, while GRSBV generally achieves sub-optimal results compared to them. For
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this reason, we report an overview of the strengths and weaknesses of VUI-UPSET and ChatGPT to provide a broader
overview of our results. The first clear message coming from our study is that VUI-UPSET excels in the absolute number

of imperatively equivalent paraphrases generated , while ChatGPT excels in the relative number (percentage). This
result is also reflected in the number of bug-revealing paraphrases (RQ2), where, again, VUI-UPSET wins in terms of
absolute number while ChatGPT wins in terms of percentage. In the context of VUI testing, both the aspects are crucial.
A higher absolute number of generated/bug-revealing paraphrases is good to thoroughly test the software. On the
other hand, a higher percentage of generated/bug-revealing paraphrases means that the adoption of such paraphrases
for testing will require less effort since developers will need to manually discard fewer paraphrases. We argue that,
depending on the skill at hand, developers might prefer one quality over the other. An advantage of VUI-UPSET over
ChatGPT is that the former is white-box, while the latter is black-box. VUI-UPSET can be further improved by refining
its steps. This aspect is fundamental in facilitating continuous improvement, as researchers can iteratively optimize the
approach to address specific weaknesses. In contrast, ChatGPT, as a Large Language Model, can only be improved by
engineering the prompt used to generate the paraphrases or by updating the model. However, it must be noticed that
VUI-UPSET has been “fine-tuned” via trial-and-error refinements (e.g., for the similarity threshold), while we used a
simple prompt for ChatGPT, which achieved remarkable results “out of the box.” This suggests that further potential
can be unleashed from ChatGPT (e.g., via prompt engineering), potentially making it the state-of-the-art approach for
this task, though more challenging to understand and control.

6.4.2 Lessons Learned for Developers. While for RQ1 we can observe clear trends, i.e., the results are almost the same for
all the skills, this was not the case for RQ2, with substantial variation among the subject skills. To analyze this phenome-
non more in depth, we tried to understand how different the paraphrases generated by the two approaches (VUI-UPSET

and ChatGPT) are. To do this, we compute the overlap between them by using the formula
|equivalent𝑣𝑖∩equivalent𝑣𝑗 |
|equivalent𝑣𝑖∪equivalent𝑣𝑗 |

.

The divergence of results between the two approaches is confirmed by the observation that they do not generate shared
paraphrases. In other words, the two compared approaches are highly complementary. It might be worth exploring to
what extent combining such approaches allows to generate more interesting bug-revealing paraphrases.

Research Direction 1. Combining VUI-UPSET and ChatGPT might allow generating a larger number of bug-
revealing paraphrases.

We also observed that a clear weak point of VUI-UPSET and GRSBV is that they sometimes find non-equivalent
synomyms in the context in which they are used. This is partially due to the fact that the filtering step fails at discarding
incorrect paraphrases. Despite we used a state-of-the-art approach for this step, it still proved mostly insufficient. We
believe this is due to the fact that the sentences at hand, in our context, are very short, while the available models
(including the one we use) work better for larger sentences.

Research Direction 2. Training models and defining approaches for checking the semantic equivalence of short
sentences might be useful for supporting VUI test generation.

In other cases, such a step fails because, for words with a given PoS, synonyms with a different PoS are used. For
example, the “start story” input utterance for the skill “Memory” is wrongly paraphrased into “first tale”. This happens
because “first” is a synonym of the noun “start.” However, the verb “start” is used in this context. Filtering out the
synonyms of the noun “start” would not have allowed VUI-UPSET to generate this paraphrase in the first place. We
believe that this limitation, due to the wrong PoS tagging, mostly comes from the shortness of the sentences at hand.
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This drawback, however, highlights another key limitation of both VUI-UPSET and GRSBV: They are constrained to
the syntactic structure of the original sentence to generate paraphrases. This limitation, indeed, is not shared with
ChatGPT. Large Language Models (LLMs), indeed, have proven particularly effective for handling natural language text
(e.g., for rephrasing text) [58]. Given the very promising results achieved by ChatGPT in our experiments, we believe it
is important to further study their applicability for the generation of VUI tests.

ResearchDirection 3. The use of ChatGPT and LLMs in general for this task should be further explored, particularly
for their capability of changing the syntactic structure of the seed sentences.

Generating paraphrases for testing VUIs is still at an early research stage, and no tool is available to practitioners. In
this paper, we have shown that an advanced tool like VUI-UPSET might help them to generate bug-revealing sentences.
However, due to the hard work required to manually check the semantic equivalence of the generated paraphrases, we
believe VUI-UPSET might not be the best option for all the developers yet. VUI-UPSET might be particularly useful for
safety- and security-critical apps (e.g., for home automation or home banking, respectively) that might benefit from a
thorough testing phase, even if the cost of doing so is high.

Guideline for Developers 1. We suggest using VUI-UPSET mostly for skills that require thorough testing since it
might cost too much for non-critical skills. On the other hand, we recommend using ChatGPT for such skills since
it generates fewer and more useful paraphrases (in relative terms).

Finally, we observed that introducing the generated utterances in the VIM of the skills we tested is always safe and
including all the valid paraphrases allows achieving the best results. On the other hand, including too many paraphrases
increases the maintenance costs of the app: If developers decide to change an utterance, they need to carefully check
whether this interferes with other utterances, and the more the utterances the harder this job. Removing unnecessary
utterances for the VIM and still make the skill pass all the tests would be the best option. Therefore, the developer must
ensure that ambiguity problems related to intent activation within the skill do not occur. Specifically, problems related
to ambiguity occur when similar paraphrases are added in different intents, and this can cause incorrect activation of
the expected intent. However, this happens if already at the skill design stage the intents identified by the developer
are very similar to each other, which is why it would be appropriate to expect activation of intents that refer to very
different application content.

Specifically, obvious examples include paraphrases that vary seed pronouns by generating paraphrases with different
pronouns that signal the presence of bugs within the skill. For example, starting with the seed sentence: “take note
on my birthday” we get the following paraphrase: “take note on his birthday” VUI-UPSET generates the following
paraphrase : “take note on his birthday” which identifies a bug.

Research Direction 4. Future research could focus on defining approaches for automatically looking for the
minimal set of utterances that allows a skill to pass all the tests.

Guideline for Developers 2. Practitioners can safely add the generated sentences to the VIM, but they should
remove the larger number of unnecessary utterances they can to reduce the maintenance costs of the skill.

It is important to highlight that VUIs do not have visual feedback and correction mechanisms. Humans, on the other
hand, are not necessarily good at pronouncing perfect sentences and sometimes correct themselves. Realistic sentences
pronounced to a VUI might include a correction (e.g., “tell me the recipe for cooking a beef steak, oh, sorry, I meant
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ribs”). This behavior could create ambiguity for VUIs during and result in errors. In our work we did not explicitly
address this problem, which should be investigated in future work.

Research Direction 5. Future research should focus on generating paraphrases for testing self-correcting input
sentences.

It might be argued that ChatGPT could be improved by simply asking it to generate more paraphrases after the
initial generation. From some preliminary tests we conducted, however, we observed that ChatGPT would never stop
generating paraphrases when asked for more. In other words, it would be necessary to define a methodology for
deciding when to stop. This is not trivial, however, and this is the reason why, in our experiments, we decided to
ask ChatGPT to generate paraphrases only once, with ChatGPT in charge of deciding the number of paraphrases to
generate for a given sentence. Of course, this aspect can be improved. Finding the best way to generate the optimal
number of paraphrases with ChatGPT is an interesting future research direction that should be explored.

Research Direction 6. Future research should aim at finding a methodology for deciding when ChatGPT (or LLMs
in general) have generated the optimal number of paraphrases.

7 THREATS TO VALIDITY

Threats to construct validity. We manually selected a sample of the seed utterances to use for generating paraphrases
from the voice interaction models of the skills we considered based on the requirements of VUI-UPSET and GRSBV.
Choosing different utterances might have lead to different results. Also, there is a possible subjectivity introduced
during manual analysis for the results of both the RQs. This threat was mitigated by using a rigorous qualitative analysis
process, as described in Section 5.

Threats to internal validity. We did not directly use the VUI provided by the skills through Alexa to run the tests,
but we deployed the skills in the test environment of the ADC, and simulated the execution of paraphrases through the
NLU-evaluation tool. Directly using the VUI might have allowed finding other issues (e.g., related to failures in the
speech recognition). However, this goes beyond the scope of our approach and of the approach we compared. Another
threat is related to the fact that we needed to re-implement GRSBV since it was not available. Also, the description of
some of the metrics of the filtering step in the original paper [26] were slightly ambiguous. We implemented the metrics
based on our interpretation, as explained in Section 2. To foster the verifiability and the replicability of VUI-UPSET, we
publicly release our implementation. Also, it is important to highlight that in VUI-UPSET, we calculated the similarity
threshold, whereas here we used the default threshold (0.59). To mitigate this threat, we also tuned this threshold as in
the VUI-UPSET.

We report in Table 9 the results of the tuning. The best 𝐹0.5 score can be achieved using as a threshold 𝑘 = 1.3. With it,
we achieve 0.21 precision (i.e., half of the generated paraphrases are imperatively equivalent) and 0.52 recall. Based on the
results obtained in terms of accuracy we can see that as the threshold increases the accuracy also increases. Specifically,
increasing the threshold allows us to discard a greater number of sentences that are not imperatively equivalent.
Although the implementation of the default threshold 0.6 has incentivized the generation of more paraphrases, it clearly
fails to produce an adequate number of them compared to VUI-UPSET. As a result, VUI-UPSET proves superior even
when compared with the optimal baseline threshold.

Threats to external validity. Our results are based on 40 Alexa skills. Such a sample might not be representative of
all the Alexa skills. We mitigated this risk by choosing different skills in terms of application domain. In our experiment,
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Table 9. Metrics computed for the similarity threshold evaluation.

𝑘 Precision Recall F0.5 Score Accuracy

0.2 0.19 1.00 0.23 0.19
0.3 0.19 1.00 0.23 0.19
0.4 0.19 0.98 0.23 0.21
0.5 0.19 0.96 0.23 0.21
0.6 0.18 0.83 0.22 0.27
0.7 0.19 0.78 0.22 0.31
0.8 0.19 0.76 0.22 0.34
0.9 0.19 0.70 0.23 0.39
1.0 0.19 0.63 0.22 0.43
1.1 0.20 0.59 0.23 0.48
1.2 0.21 0.58 0.24 0.52
1.3 0.21 0.52 0.24 0.54
1.4 0.19 0.41 0.21 0.58
1.5 0.20 0.39 0.22 0.58
1.6 0.18 0.32 0.19 0.20
1.7 0.18 0.29 0.20 0.62
1.8 0.16 0.23 0.17 0.63
1.9 0.16 0.19 0.16 0.65
2.0 0.15 0.17 0.15 0.66
2.1 0.14 0.15 0.15 0.67
2.2 0.13 0.13 0.13 0.67
2.3 0.11 0.10 0.10 0.67
2.4 0.11 0.10 0.10 0.68
2.5 0.10 0.09 0.10 0.68
2.6 0.10 0.08 0.09 0.68
2.7 0.10 0.07 0.09 0.69
2.8 0.10 0.07 0.09 0.69
2.9 0.09 0.06 0.08 0.70
3.0 0.08 0.05 0.08 0.71
3.1 0.08 0.05 0.07 0.71
3.2 0.07 0.04 0.06 0.72
3.3 0.05 0.03 0.04 0.73
3.4 0.05 0.03 0.05 0.73

we selected Alexa skills developed in JavaScript. However, we expect no significant differences in skills developed in
other programming languages since our approach focuses on the VIM rather than on the programming logic of the
skills. An additional point to note is that our results are only related to skills for English-speaking users. VUI-UPSET is
implemented to work only on English sentences as well. However, it is possible to generalize VUI-UPSET for other
languages as well through the use of other synonym libraries by changing the specific rules defined in the PoS analysis
(e.g., pronouns) and DL models specific to the desired language. Finally, it is possible that the results obtained do not
generalize to other technologies, e.g., Actions for Google Assistant. Indeed, the results of RQ2 depend on how tolerant
the framework is with variations of the pre-defined seed utterances, and this might change.

8 CONCLUSION

The interest in Voice User Interface-based apps has grown over the last years. However, the research on automated
testing for VUIs is still in its infancy. In this paper, we presented VUI-UPSET, an approach for automatically generating
paraphrases that allow developers to test VUIs, built upon previous research in chatbot-testing. We run a large empirical
study on 40 open-source Alexa skills where we compared VUI-UPSET with an existing state-of-the-art approach for
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chatbot-testing, i.e., GRSBV, and an LLM-based approach, i.e., ChatGPT. Our results show that VUI-UPSET generates
the highest absolute total number of both imperatively equivalent paraphrases and bug-revealing paraphrases, while
ChatGPT is better in terms of percentage for both.When counting the number of skills for which each approach generates
the highest number of bug-revealing paraphrases, we observe that VUI-UPSET and ChatGPT obtain comparable results.
Finally, we checked if the generated paraphrases can be added to the VIM to improve the skills. We found that doing so
is always safe (i.e., the original utterances always work as intended). It is important to point out the promising results
obtained by ChatGPT. Although VUI-UPSET outperforms ChatGPT in terms of absolute total number of bug-revealing
paraphrases, we used ChatGPT “out of the box,” without performing prompt tuning and without addressing other
challenges it poses, such as the determination of a criterion for stopping generating paraphrases. Improving ChatGPT
appears to be a promising and cost-effective research direction. Besides that, we provide several other research directions
in this field and guidelines to developers who plan to use VUI-UPSET for their skills.
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